This study presented the effect of membrane thickness on hydrogen permeability. Microvoids on the surface of the membrane should not exist for the exact values of hydrogen permeability. Pd-Cu-Ni hydrogen alloy membranes were fabricated by Ni powder sintering, substrate plasma pretreatment, sputtering and Cu reflow process. And this leaded to void-free surface and dense film of Pd-Cu-Ni hydrogen alloy membrane. Hydrogen permeation test showed that hydrogen permeability increased from 2.7 to $15.2ml/cm^2{\cdot}min{\cdot}atm^{0.5}$ as membrane thickness decreased from 12 to $4{\mu}m$. This represented the similar trend as a hydrogen permeability of pure palladium membrane based on solution-diffusion mechanism.
The separation of hydrogen depends on porosity, diffusivity and solubility in permeation membrane. Dense membrane is always showing a solution diffusion mechanism but porous membrane is not showing. Therefore, porous membrane has a good hydrogen flux due to pore is carried out transferred media. This mechanism is named as the Knudsen diffusion. Hydrogen molecules or hydrogen atoms are diffused along pore that is a mean free path. In this study, complex layer hydrogen permeation membrane was fabricated by hot press process. And then, it was evaluated and calculated to relationship between hydrogen permeability and membrane porosity.
Thermochemical water-splitting IS(Iodine-Sulfur) process has been investigating for large-scale hydrogen production. For the construction of an efficient process scheme, two kinds of membrane technologies are under investigating to improve the hydrogen producing HI decomposition step. One is a concentration of HI in quasi-azeotropic HIx ($HI-H_2O-I_2$) solution by elecro-electrodialysis. It was confirmed that HI concentrated from the $HI-H_2O-I_2$ solution with a molar ratio of 1:5:1 at $80^{\circ}C$. The other is a membrane reactor to enhance the one-pass conversion of thermal decomposition reaction of gaseous hydrogen iodide (HI). It was found from the simulation study that the conversion of over 0.9 would be attainable using the membrane reactor using the gas permeation properties of the prepared silica hydrogen permselective membrane by chemical vapor deposition (CVD). Design criterion of the membrane reactor was also discussed.
To utilize hydrogen energy, high-yield, high-purity hydrogen needs to be produced; therefore, hydrogen separation membrane studies are being conducted. The membrane reactor that fabricates hydrogen needs to have high hydrogen permeability, selective permeability, heatresistant and a stable mechanical membrane. Dense membranes of Pd and Pd alloys are usually used, but these have drawbacks associated with high cost and durability. Therefore, many researchers have studied replacing Pd and Pd alloys. Dense TiN membrane is highly selective and can separate high-purity hydrogen. The porous alumina has a high permeation rate but low selectivity; therefore, separating high-purity hydrogen is difficult. To overcome this drawback, the two materials are combined as composite reclamations to produce a separation membrane with a high penetration rate and high selectivity. Accordingly, TiN-alumina was manufactured using a high-energy ball mill. The TiN-alumina membrane was characterized by X-ray diffraction analysis, scanning electron microscopy, and energy dispersive spectroscopy. The hydrogen permeability of the TiN-alumina membrane was estimated by a Sievert-type hydrogen permeation membrane apparatus. Due to the change in the diffusion mechanism, the transmittance value was lower than that of the general TiN ceramic separator.
Hydrogen isotopes, which are used as raw materials in fusion reaction, participate in the reaction only in small amount, and most of them are released together with impurities. In order to recover and reuse only hydrogen isotopes from this exhaust gas, a recovery process is required, and most of the hydrogen isotopes can be recovered using a Pd Membrane. In this study, the recovery rate of hydrogen isotopes was measured through the first and second stage Pd membrane experiments. In the case of the experiment using a single stage Pd membrane, about 99.2%, and in the case of the first stage and second stage Pd membrane connection experiments, a recovery rate of 99.9% or more was obtained. Therefore, the recovery rate of Pd membrane process applied to hydrogen can be applied to hydrogen isotopes. In addition, the simulation model was established using aspen custom modeler, a commercial software, and the validity of the simulation was checked by applying the references and experimental data. The simulation results based on the experimental data showed a difference of 2% or less.
본 연구는 1차원 반응기 모델을 이용한 수치 시뮬레이션을 통해 수소투과량, 수소선택도, 사용된 촉매의 양, 급송흐름에서의 $H_2O/CO$ 조성비 및 Ar sweep gas가 막반응기(membrane reactor)에서의 수성가스전이반응의 성능에 미치는 영향을 분석하였다. 막반응기에서 평형상태보다 향상된 수소수율을 얻기 위해선 적어도 100 이상의 수소선택도를 가져야 함이 관찰되었으며, 수소투과량이 계속 증가될 경우에는 수소수율의 증가폭이 점차 감소됨이 보였다. 낮은 수소투과량의 경우에는 촉매량이 증가할수록 초기엔 증가된 CO 전환율을 보이다가 점차 그 증가폭이 감소되었으며, 높은 수소투과량의 경우에는 촉매의 양과 무관하게 높은 CO 전환율이 관찰되었다. 급송흐름에서의 $H_2O/CO$ 조성비가 1.5 이상인 경우엔 수소투과량이 막반응기에서의 CO 전환율에 미치는 영향이 미미하였고, 막반응기에서 평형상태보다 향상된 CO 전환율을 얻기 위해선 적어도 $6.7{\times}10^{-6}mol\;s^{-1}$ 의 Ar 몰유속이 필요함이 밝혀졌다.
에너지 패러다임의 변화가 요구되는 현대에 수소는 매력적인 에너지원이다. 이러한 수소를 정제하는 기술 중에서 분리막을 이용한 기술은 저비용으로 고순도의 수소를 정제할 수 있는 기술로 주목받고 있다. 그러나 수소 분리 성능이 뛰어난 팔라듐(Pd)은 가격이 매우 비싸 이를 대체한 소재가 필요하다. 본 연구에서는 수소 투과 성능은 좋으나 수소 취성에 약한 니오븀(Nb)과 수소 투과 성능은 떨어지나 내구성이 뛰어난 니켈(Ni)과 지르코늄(Zr)을 혼합한 합금으로 분리막을 제조하여 1~4 bar, 350~450 ℃ 조건에서 수소 투과 특성을 확인하였다. Pd를 코팅하지 않은 Ni48Nb32Zr20 분리막의 경우 최대 0.69 ml/cm2/min의 투과량을 보였으며, Pd가 코팅된 경우에는 최대 13.05 ml/cm2/min의 투과량을 보였다.
본 총설은 분리막기술이 적용된 수소생산에 대한 개론으로, 특히, 암모니아를 수소운반체로 이용하는 수소생산에 대한 연구결과를 중점적으로 서술하였다. 암모니아를 수소운반체로 적용한 수소생산은 추가적인 탄소생성이 없다는 점 외에 여러 측면에 있어 이점이 있다. 많은 연구들이 고순도 수소 분리 및 생산을 위한 분리막 개발을 위해 진행되고 있으며, 이들 중 팔라듐을 기본으로 한 분리막(예를 들어, 다공성 세라믹 또는 다공성 금속 지지체와 팔라듐 합금의 얇은 선택층으로 이루어진 분리막)에 대한 연구가 활발하다. 반면에, 효율적인 암모니아 분해를 위해서는 주로 루테늄 촉매가 적용되고 있으며, 루테늄과 지지체 및 촉진제로 이루어진 루테늄에 기반을 둔 촉매에 대한 연구발표가 다수 존재한다. 수소생산을 위한 분리막 반응기 형태로는 충전층, 유동층, 그리고 마이크로반응기 등이 있으며, 이들의 최적화 및 원활한 물질전달 연구는 현재진행형이다. 또한, 높은 암모니아 분해율, 고순도 수소생산 및 높은 수소생산율을 얻기 위해 분리막과 촉매의 다양한 조합에 대한 연구 및 분리막과 촉매의 역할을 동시에 구현할 수 있는 분리막에 대한 연구가 발표되고 있다.
The dehydrogenation of propane to propylene has been studied in an isothermal high-temperature shell-and-tube membrane reactor containing a Pd-coated ${\psi}$-Al2O3 membrane and a Pt/K/Sn/Al2O3 packed catalyst . A tubular Pd-coated ${\psi}$-Al2O3 membrane was prepared by an electroless plating method. This membrane showed high hydrogen to nitrogen permselectivities (PH2N2 = 10-50) at 400 $^{\circ}C$ and 500 $^{\circ}C$ with various transmembrane pressure drops. The employment of a membrane reactor in the dehydrogenation reaction, which selectively separates hydrogen from the reaction mixture along the reaction path, can greatly increase the conversion and enable operation of the reactor at lower temperatures. High hydrogen permselectivity has been confirmed as a key factor in determining the reactor performance of conversion enhancement.
With the steady depletion off fossil fuel reserves, hydrogen based energy sources become increasingly attractive. Therefore hydrogen production or separation technologies, such as Bas separation membrane based on adsorption technology, have received enormous attention in the industrial and academic fields. In this study, the transport mechanisms of the MTES (methyltriethoxysilane) templating silica/a-alumina composite membrane were evaluated by using unary, binary and quaternary hydrogen gas mixtures permeation experiments at unsteady- and steady-states. Since the permeation flux in the MTES membrane, through the experimental and theoretical study, was affected by molecular sieving effects as well as surface diffusion properties, the kinetic and equilibrium separation should be considered simultaneously in the membrane according to molecular properties. In order to depict the transient multi-component permeation on the templating silica membrane, the GMS (generalized Maxwell-Stefan) and DGM (dust Bas model) were adapted to unsteady-state material balance
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.