• 제목/요약/키워드: Hydrogen ion concentration

검색결과 235건 처리시간 0.03초

Ca과 BSA가 소 정자세척액내 수소이온농도에 미치는 영향 (Effect of Ca and BSA on Hydrogen Ion Concentration in Bovine Sperm Washed Solution)

  • 박영식;임경순
    • 한국가축번식학회지
    • /
    • 제15권3호
    • /
    • pp.201-205
    • /
    • 1991
  • This study was carried out to investigate the effects of Ca and BSA on hydrogen ion concentration in sperm washed solution. The results obtained were as follows : 1. The hydrogen concentration in 1st and 2nd sperm washed solutions was signifcinatly(p<0.01) higher when sperm was washed with SHPsolution containing 2mM Ca than when sperm washed with SHP solution or SHP solution containing 10mM Ca. 2. The hydrogen ion concentration in sperm washed solution was significnatly(p<0.05) higher when seprm was washed with SHP solution containing BSA-FAF than when sperm was washed with SHP solution or SHP solution containing BSA-V.

  • PDF

Impact of Lactic Acid and Hydrogen Ion on the Simultaneous Fermentation of Glucose and Xylose by the Carbon Catabolite Derepressed Lactobacillus brevis ATCC 14869

  • Jeong, Kyung Hun;Israr, Beenish;Shoemaker, Sharon P.;Mills, David A.;Kim, Jaehan
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1182-1189
    • /
    • 2016
  • Lactobacillus brevis ATCC 14869 exhibited a carbon catabolite derepressed phenotype that has ability to consume fermentable sugars simultaneously with glucose. To evaluate this unusual phenotype under harsh conditions during fermentation, the effects of lactic acid and hydrogen ion concentrations on L. brevis ATCC 14869 were examined. Kinetic equations describing the relationship between specific cell growth rate and lactic acid or hydrogen ion concentration were deduced empirically. The change of substrate utilization and product formation according to lactic acid and hydrogen ion concentration in the media were quantitatively described. Although the simultaneous utilization has been observed regardless of hydrogen ion or lactic acid concentration, the preference of substrates and the formation of two-carbon products were changed significantly. In particular, acetic acid present in the medium as sodium acetate was consumed by L. brevis ATCC 14869 under extreme pH of both acid and alkaline conditions.

Electrochemical behavior of dissolved hydrogen at Pt electrode surface in a high temperature LiOH-H3BO3 solution: Effect of chloride ion on the transient current of the dissolved hydrogen

  • Myung-Hee Yun;Jei-Won Yeon
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3659-3664
    • /
    • 2023
  • The electrochemical behavior of dissolved hydrogen (H2) was investigated at a Pt electrode in a high temperature LiOH-H3BO3 solution. The diffusion current of the H2 oxidation was proportional to the concentration of the dissolved H2 as well as the reciprocal of the temperature. In the polarization curve, a potential region in which the oxidation current decreases despite an increase in the applied potential between the H2 oxidation and the water oxidation regions was observed. This potential region was interpreted as being caused by the formation of a Pt oxide layer. Using the properties of the Cl- ion that reduces the growth rate of the Pt oxide layer, it was confirmed that there is a correlation between the Cl- ion concentration and the transient current of the H2 oxidation.

ELA를 위한 저수소화 Si 박막의 특성에 관한 연구 (The properties of low hydrogen content silicon thin films for ELA(Excimer Laser Annealing))

  • 권도현;류세원;박성계;남승의;김형준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.476-479
    • /
    • 2000
  • In this study, mesh-type PECVD system was suggested to minimize the hydrogen concentration. The main structural difference between the triode system and a conventional system is that a mesh was attached to the substrate holding electrode. We investigated several conditions to compare with conventional PECVD. The main effect of mesh was to minimize the substrate damage by ion bombardment and to enhance the surface reaction to induce hydrogen desorption. It was also found that hydrogen concentration decreased but deposition rate increased as increasing applied dias. Applied DC bias enhanced sputtering process. Intense ion bombardment causes the weakly bonded hydrogen or hydrogen-containing species to leave the growing film and increased adatom mobility. Furthermore, addition of hydrogen gas enhance the surface diffusion of adatom. The structural properties of poly-Si films were analyzed by scanning electron microscopy(SEM).

  • PDF

Solid Electrochemical Method of Measuring Hydrogen Concentration with O2-/H+ Hetero-Ionic Junction

  • Chongook Park
    • 센서학회지
    • /
    • 제33권2호
    • /
    • pp.63-69
    • /
    • 2024
  • A novel method for measuring hydrogen concentration is introduced, along with its working principle and a novel detection algorithm. This configuration requires no additional reference compartment for potentiometric electrochemical measurements; therefore, it is the most suitable for measuring dissolved hydrogen in the liquid phase. The sensor's electromotive force saturates at a certain point, depending on the hydrogen concentration during the heating process of the sensor operation. This dynamic temperature scanning method provides higher sensitivity than the constant temperature measurement method.

Fenton공정과 철 이온의 전기적 산화·환원 반응을 이용한 공정에서 1,4-Dioxane을 포함하는 산업폐수 처리에 관한 연구 (Treatment of Industrial Wastewater including 1,4-Dioxane by Fenton Process and Electrochemical Iron Redox Reaction Process)

  • 이상호;김판수
    • 상하수도학회지
    • /
    • 제21권4호
    • /
    • pp.375-383
    • /
    • 2007
  • Treatment efficiency research was performed using Fenton process and the electrochemical process in the presence of ferrous ion and hydrogen peroxide for the industrial wastewater including 1,4-Dioxane produced during polymerization of polyester. The Fenton process and the electrochemical Iron Redox Reaction (IRR) process were applied for this research to use hydroxyl radical as the powerful oxidant which is continuously produced during the redox reaction with iron ion and hydrogen peroxide. The results of $COD_{Cr}$ and the concentration of 1,4-Dioxane were compared with time interval during the both processes. The rapid removal efficiency was obtained for Fenton process whereas the slow removal efficiency was occurred for the electrochemical IRR process. The removal efficiency of $COD_{Cr}$ for 310 minutes was 84% in the electrochemical IRR process with 1,000 mg/L of iron ion concentration, whereas it was 91% with 2,000 mg/L of iron ion concentration. The lap time to remove all of 1,4-Dioxane, 330 mg/L in the wastewater took 150 minutes with 1,000 mg/L of iron ion concentration, however it took 120 minutes with 2,000 mg/L of iron ion concentration in the electrochemical IRR process.

Determination of Trace Anions in Concentrated Hydrogen Peroxide by Direct Injection Ion Chromatography with Conductivity Detection after Pt-Catalyzed On-Line Decomposition

  • 김도희;이보경;이동수
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권6호
    • /
    • pp.696-700
    • /
    • 1999
  • A method has been developed for the determination of trace anion impurities in concentrated hydrogen peroxide. The method involves on-line decomposition of hydrogen peroxide, ion chromatographic separation and subsequent suppressed-type conductivity detection. H2O2 is decomposed in Pt-catalyst filled Gore-Tex membrane tubing and the resulting aqueous solution containing analytes is introduced to the injection valve of an ion chromatograph for periodic determinations. The oxygen gas evolving within the membrane tubing escapes freely through the membrane wall causing no problem in ion chromatographic analysis. Decomposition efficiency is above 99.99% at a flow rate of 0.4mL/min for a 30% hydrogen peroxide concentration. Analytes are quantitatively retained. The analysis results for several brands of commercial hydrogen peroxides are reported.

Fenton 시약 및 UV 광 조사에 의한 제초제 paraquat의 분해 (Degradation of herbicide paraquat by Fenton reagent and UV light irradiation)

  • 김병하;안미연;김장억
    • 농약과학회지
    • /
    • 제3권3호
    • /
    • pp.20-26
    • /
    • 1999
  • Paraquat가 존재하는 수용액에 강력한 산화작용을 나타내는 Fenton시약을 첨가한 다음 UV 광을 조사하여 paraquat의 분해 정도를 조사하였다. Paraquat의 농도에 관계없이 암 조건이나 UV 광이 조사되는 반응조건에서 hydrogen peroxide나 ferric ion을 각각 단독으로 처리하였을 경우에는 paraquat의 분해가 이루어지지 않았다. Ferric ion 과 hydrogen peroxide를 동시에 처리하였을 경우에는 암 조건과 UV 광이 조사되는 반응조건 모두 반응개시 후 10시간 이내에 반응이 평형상태에 도달하였으며 암 조건의 경우에는 약 78%, UV 광이 조사되는 반응 조건의 경우에는 약 90%의 paraquat 분해정도를 나타내었다. 암 조건에서 hydrogen peroxide와 ferric ion의 농도 변화에 따른 paraquat의 분해 정도를 조사한 결과 $0.2{\sim}0.8$ mM의 ferric ion이 처리되었을 경우, $10{\sim}500mg/{\ell}$의 paraquat는 hydrogen peroxide의 농도에 관계없이 $20{\sim}70%$의 분해율을 나타내었다. UV 광이 조사된 반응 조건에서는 10 $mg/{\ell}$과 100 $mg/{\ell}$의 paraquat 농도에서는 ferric ion과 hydrogen peroxide의 농도와 관계없이 95% 이상의 분해율을 나타내었으나 200 $mg/{\ell}$과 500 $mg/{\ell}$의 paraquat 농도에서는 암 조건에서와 마찬가지로 ferric ion의 농도가 증가할수록 paraquat의 분해율도 증가하는 경향을 나타내었다. 반응시간의 경과와 ferric ion의 농도 변화($0.2{\sim}0.8$ mM)에 따른 paraquat의 분해 초기 반응속도 상수는 암 조건의 경우 $0.0004{\sim}0.0314$, UV 광이 조사되는 반응 조건의 경우 $0.0023{\sim}0.0367$로 나타났다. Paraquat의 분해초기 반응속도는 UV 광이 조사되는 반응 조건이나 암 조건에 상관없이 ferric ion의 농도가 증가할수록 증가하였다. 암조건에서의 분해 반감기는 $20{\sim}1,980$분, UV 광이 조사되는 반응 조건에서의 분해 반감기는 $19{\sim}303$분으로 나타나 암 조건보다는 UV 광이 조사되는 반응 조건이 paraquat의 분해를 위한 반응 조건으로 유리함을 알 수 있다.

  • PDF

구미 불산 누출사고 지점 주변 식물의 불소화합물 농도 분포 및 공기 중 불화수소 농도 추정에 관한 연구 (Study on the Distribution of Fluorides in Plants and the Estimation of Ambient Concentration of Hydrogen Fluoride Around the Area of the Accidental Release of Hydrogen Fluoride in Gumi)

  • 구슬기;최인자;김원;선옥남;김신범;이윤근
    • 한국환경보건학회지
    • /
    • 제39권4호
    • /
    • pp.346-353
    • /
    • 2013
  • Objectives: The goal of this study is to identify the distribution of the foliar fluorine content of vegetation surrounding the area where hydrofluoric acid was accidently released in Gumi, Gyeongsangbuk-do on September 27, 2012. In addition, it also aims to estimate the concentration of hydrogen fluoride in the air on the day of the accident. Methods: Samples of plant leaves were collected on October 7, 2012 within 1 km from the site where the accident occurred. These samples were analyzed for soluble fluorine ion with an ion selective electrode. The ambient concentration of hydrogen fluoride was calculated using the fluoride content in the plant via the dose-rate equation (${\Delta}F$=KCT). Results: The arithmetic and geometric means of the concentrations were 2158.2 and 1183.7mg F $kg^{-1}$ for leaves and, 2.4 and 1.1 ppm HF for the air, respectively. The highest concentration of hydrogen fluoride in the air was 14.7 ppm, which is higher than the maximum concentration reported by the government (1 ppm) and the exposure limit (ceiling, 3 ppm). The concentrations of both fluorine and hydrogen fluoride decreased with increasing distance from the accident site and showed a significant decrease outside of a 500m radius from the site (p <0.05). Conclusions: The area around the accident site was highly polluted with hydrogen fluoride according to the results of this study. Considering the persistency of hydrogen fluoride in the environment, long-term monitoring and environmental impact assessment should be pursued.

Mesh-type PECVD를 이용한 DC-bias인가 및 수소가스 첨가에 따른 저수소화 비정질 실리콘 박막에 관한 연구 (The Properties of Low Hydrogen Content α-Si Thin Film Using DC-bias Enhanced or Addition of H2Gas in Mesh-type PECVD System)

  • 류세원;권도현;박성계;남승의;김형준
    • 한국재료학회지
    • /
    • 제12권4호
    • /
    • pp.235-239
    • /
    • 2002
  • In this study mesh-type PECVD system was suggested to minimize the hydrogen concentration. The main structural difference between the triode system and a conventional system is that, a third electrode, a mesh, is inserted between the powered and the ground electrode. We investigated several conditions to compare with conventional PECVD. The main effect of mesh was to minimize the substrate damage by ion bombardment and to enhance the surface reaction to induce hydrogen desorption. It was also found that hydrogen concentration decreased but deposition rate increased as increasing applied bias. Applied DC-bia s enhanced sputtering process. Intense ion bombardment causes the weakly bonded hydrogen or hydrogen-containing species to leave the growing film and increased adatom mobility. Furthermore, addition of hydrogen gas enhance the surface diffusion of adatom.