• Title/Summary/Keyword: Hydrogen generation system

Search Result 280, Processing Time 0.033 seconds

Anaerobic Biotreatment of Animal Manure - A review of current knowledge and direction for future research -

  • Hong, Jihyung
    • Journal of Animal Environmental Science
    • /
    • v.11 no.2
    • /
    • pp.97-102
    • /
    • 2005
  • Anaerobic decomposition is one of the most common processes in nature and has been extensively used in waste and wastewater treatment for several centuries. New applications and system modifications continue to be adapted making the process either more effective, less expensive, or suited to the particular waste in question and the operation to which it is to be applied. Animal manure is a highly biodegradable organic material and will naturally undergo anaerobic fermentation, resulting in release of noxious odors, such as in manure storage pits. Depending on the presence or absence of oxygen in the manure, biological treatment process may be either aerobic or anaerobic. Under anaerobic conditions, bacteria carry on fermentative metabolisms to break down the complex organic substances into simpler organic acids and then convert them to ultimately formed methane and carbon dioxide. Anaerobic biological systems for animal manure treatment include anaerobic lagoons and anaerobic digesters. Methane and carbon dioxide are the principal end products of controlled anaerobic digestion. These two gases are collectively called biogas. The biogas contains $60\~70\%$ methane and can be used directly as a fuel for heating or electrical power generation. Trace amounts of ammonia and hydrogen sulfide ($100\~300\;ppm$) are always present in the biogas stream. Anaerobic lagoons have found widespread application in the treatment of animal manure because of their low initial costs, ease of operation and convenience of loading by gravity flow from the animal buildings. The main disadvantage is the release of odors from the open surfaces of the lagoons, especially during the spring warm-up or if the lagoons are overloaded. However, if the lagoons are covered and gases are collected, the odor problems can be solved and the methane collected can be used as a fuel. Anaerobic digesters are air-tight, enclosed vessels and are used to digest manure in a well-controlled environment, thus resulting in higher digestion rates and smaller space requirements than anaerobic lagoons. Anaerobic digesters are usually heated and mixed to maximize treatment efficiency and biogas production. The objective of this work was to review a current anaerobic biological treatment of animal manure for effective new technologies in the future.

  • PDF

Antioxidant activities of Erythrina stricta Roxb.using various in vitro and ex vivo models

  • AsokKumar, K;UmaMaheswari, M;Sivashanmugam, AT;SubhadraDevi, V;Subhashini, N;Ravi, TK
    • Advances in Traditional Medicine
    • /
    • v.8 no.3
    • /
    • pp.266-278
    • /
    • 2008
  • Erythrina stricta, a deciduous tree widely used traditionally in indigenous system of medicine for various ailments such as rheumatism, fever, leprosy, epilepsy etc. The leaves of Erythrina stricta was extracted with ethanol (70%) and used for the evaluation of various in vitro antioxidant assays which includes H - donor activity, nitric oxide scavenging, superoxide anion scavenging, reducing ability, hydroxyl radical, hydrogen peroxide scavenging, total phenolic content, total flavonoid content, total antioxidant activity by thiocyanate and phosphomolybdenum method, metal chelating, $\beta$-carotene bleaching, total peroxy radical assays. The pro-oxidant activity was measured using bleomycin-dependent DNA damage. Ex vivo models like lipid peroxidation and erythrocyte haemolysis were also used to study the antioxidant property of the extract. The various antioxidant activities were compared with suitable standard antioxidants such as ascorbic acid, butylated hydroxyl toluene, $\alpha$-tocopherol, curcumin, quercetin and Trolox. The generation of free radicals viz. $O_2^{{\cdot}-}$, $OH^{\cdot}$, $H_2O_2$, $NO^{\cdot}$ and peroxyl radicals were effectively scavenged by the ethanolic extract of Erythrina stricta. In all the methods, the extract offered strong antioxidant activity in a concentration dependent manner. The total phenolic content, flavonoid content and total antioxidant activity in Erythrina stricta were determined as microgram (g) pyrocatechol, quercetin and $\alpha$-tocopherol equivalent/mg respectively. The extract did not exhibit any prooxidant activity when compared with ascorbic acid. The results obtained in the present study clearly indicates that Erythrina stricta scavenges free radicals and reduces lipid peroxidation, ameliorating the damage imposed by oxidative stress in different disease conditions and serve as a potential source of natural antioxidant.

Spherical UO2 Kernel and TRISO Coated Particle Fabrication by GSP Method and CVD Technique (겔침전과 화학증착법에 의한 구형 UO2 입자와 TRISO 피복입자 제조)

  • Jeong, Kyung-Chai;Kim, Yeon-Ku;Oh, Seung-Chul;Cho, Moon-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.590-597
    • /
    • 2010
  • HTGR using a TRISO coated particles as nuclear raw fuel material can be used to produce clean hydrogen gas and process heat for a next-generation energy source. For these purposes, a TRISO coated particle was prepared with 3 pyro-carbon (buffer, IPyC, and OPyC) layers and 1 silicone carbide (SiC) layer using a CVD technique on a spherical $UO_2$ kernel surface as a fissile material. In this study, a spherical $UO_2$ particle was prepared using a modified sol-gel method with a vibrating nozzle system, and TRISO coating fabrication was carried out using a fluidized bed reactor with coating gases, such as acetylene, propylene, and methyltrichlorosilane (MTS). As the results of this study, a spherical $UO_2$ kernel with a sphericity of 1+0.06 was obtained, and the main process parameters in the $UO_2$ kernel preparation were the well-formed nature of the spherical ADU liquid droplets and the suitable temperature control in the thermal treatment of intermediate compounds in the ADU, $UO_3$, and $UO_2$ conversions. Also, the important parameters for the TRISO coating procedure were the coating temperature and feed rate of the feeding gas in the PyC layer coating, the coating temperature, and the volume fraction of the reactant and inert gases in the SiC deposition.

The Effect of Different Particle Size from PAHs Contaminated Sediment by Ultrasonic Irradiation (PAHs로 오염된 침전물의 초음파 처리시 입자크기가 미치는 영향)

  • Na, Seung-Min;Khim, Jee-Hyeong;Cui, Ming-Can;Ahn, Yun-Gyong;Weavers, Linda K.
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.379-387
    • /
    • 2010
  • Sediments of Little Scioto (LS) River in Ohio was contaminated by poor disposal of creosote from Baker Wood Creosoting Facility. Among the primary compounds of creosote, Polycyclic Aromatic Hydrocarbons (PAHs) are the most common ingredient PAHs are known for toxic, carcinogenic and mutagenic compounds. There are many difficulties to remove the PAHs in nature environment because their characteristics are having a less water-solubility, volatile and low mobility properties as increasing the molecular weight. The generation of hydroxyl radicals (${\cdot}OH$) and hydrogen peroxide ($H_2O_2$) forms as well as high temperature (5000 K) and pressure (1000 atm) by a physico-chemical effects of ultrasound during a cavitation collapse can promote the degradation and desorption of PAHs in sediment And it can also produces shock wave and microjets which are able to change the size and surface of particle in solid-liquid system as one of physical effects. Therefore, we explored to understand the role of particle size, the effect of elimination for PAHs concentration by ultrasound and optimize the conditions for ultrasonic treatment. The condition of various size of particles (> $150{\mu}m$, < $150{\mu}m$) and solid-liquid ratio (12.5g/L, 25g/L) for the treatment was considered and ultrasonic power (430 W/L) with liquid - hexane extraction and microwave extraction method were applied after ultrasound treatment.

Preparation of Si/C Anode with PVA Nanocomposite for Lithium-ion Battery Using Electrospinning Method

  • Choi, Sung Il;Lee, Ye Min;Jeong, Hui Cheol;Jung, Eun-Jin;Lee, Mi Sun;Kim, Jinyoung;Kim, Yong Ha;Won, Yong Sun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.139-142
    • /
    • 2018
  • Silicon (Si) is a promising anode material for next-generation lithium ion batteries (LIBs) because of its high capacity of 4,200 mAh/g ($Li_{4.4}Si$ phase). However, the large volume expansion of Si during lithiation leads to electrical failure of electrode and rapid capacity decrease. Generally, a binder is homogeneously mixed with active materials to maintain electrical contact, so that Si needs a particular binding system due to its large volume expansion. Polyvinyl alcohol (PVA) is known to form a hydrogen bond with partially hydrolyzed silicon oxide layer on Si nanoparticles. However, the decrease of its cohesiveness followed by the repeated volume change of Si still remains unsolved. To overcome this problem, we have introduced the electrospinning method to weave active materials in a stable nanofibrous PVA structure, where stresses from the large volume change of Si can be contained. We have confirmed that the capacity retention of Si-based LIBs using electrospun PVA matrix is higher compared to the conservative method (only dissolving in the slurry); the $25^{th}$ cycle capacity retention ratio based on the $2^{nd}$ cycle was 37% for the electrode with electrospun PVA matrix, compared to 27% and 8% for the electrodes with PVdF and PVA binders.

High aspect-ratio InGaN nanowire photocatalyst grown by molecular beam epitaxy (MBE 법에 의해 성장된 고종횡비 InGaN 나노와이어 광촉매)

  • An, Soyeon;Jeon, Dae-Woo;Hwang, Jonghee;Ra, Yong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.143-148
    • /
    • 2019
  • We have successfully fabricated high aspect-ratio GaN-based nanowires on Si substrates using molecular beam epitaxy (MBE) system for high-efficiency hydrogen generation of photoelectrochemical water splitting. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) demonstrated that p-GaN:Mg and p-InGaN nanowires were grown vertically on the substrate with high density. Furthermore, it was also confirmed that the emission wavelength of p-InGaN nanowire can be adjusted from 552 nm to 590 nm. Such high-aspect ratio p-InGaN nanowire structure will be a solid foundation for the realization of ultrahigh-efficiency photoelectrochemical water splitting through sunlight.

Ultrasonic-assisted dissolution of U3O8 in carbonate medium

  • Chenxi Hou;Mingjian He ;Haofan Fang;Meng Zhang;Yang Gao;Caishan Jiao;Hui He
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.63-70
    • /
    • 2023
  • Ultrasound-assisted dissolution of U3O8 powder in carbonate solution was explored to determine if and how ultrasound act during the dissolution. The variation of U3O8 solid particles and uranyl complexes under ultrasound treatment and magnetic stirring was observed in carbonate media. The results show that the use of ultrasound can increase the solubility and dissolution rate of U3O8 powder than that under magnetic stirring. The crush of U3O8 particles and the reduction of the activation energy (Ea, kJ/mol) of U3O8 dissolution reaction were observed, which both play an important role in the ultrasonic-assisted dissolution of U3O8 in carbonate-peroxide solution. Meanwhile, there is no observation of the ultrasound effect on the distribution of uranyl species and hydrolysis of uranyl complexes during the ultrasound treatment in carbonate-peroxide solution. Although the generation of ·OH radicals under ultrasound (22 ± 2 kHz) was observed, the oxidation of ·OH had little effect on the dissolution of U3O8 in the carbonate-peroxide solution system.

Rheological Characteristics of Hydrogen Fermented Food Waste and Review on the Agitation Intensity (음식물류폐기물 수소 발효액의 유변학적 특성과 교반강도 고찰)

  • Kim, Min-Gyun;Lee, Mo-Kwon;Im, Seong-Won;Shin, Sang-Ryong;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.4
    • /
    • pp.41-50
    • /
    • 2017
  • The design of proper agitation system is requisite in biological waste treatment and energy generation plant, which is affected by viscosity, impeller types, and power consumption. In the present work, hydrogen fermentation of food waste was conducted at various operational pHs (4.5~6.5) and substrate concentrations (10~50 g Carbo. COD/L), and the viscosity of fermented broth was analyzed. The $H_2$ yield significantly varied from 0.51 to $1.77mol\;H_2/mol\;hexose_{added}$ depending on the pH value, where the highest performance was achieved at pH 5.5. The viscosity gradually dropped with shear rate increase, indicating a shear thinning property. With the disintegration of carbohydrate, the viscosity dropped after fermentation, but it did not change depending on the operational pH. At the same pH level, the $H_2$ yield was not affected much, ranging $1.40{\sim}1.86mol\;H_2/mol\;hexose_{added}$ at 10~50 g Carbo. COD/L. The zero viscosity and infinite viscosity of fermented broth increased with substrate concentrations, from 10.4 to $346.2mPa{\cdot}s$, and from 1.7 to $5.3mPa{\cdot}s$, respectively. There was little difference in the viscosity value of fermented broth at 10 and 20 g Carbo. COD/L. As a result of designing the agitation intensity based on the experimental results, it is expected that the agitation intensity can be reduced during hydrogen fermentation. The initial and final agitation intensity of 30 g Carbo. COD/L in hydrogen fermentation were 26.0 and 10.0 rpm, respectively. As fermentation went on, the viscosity gradually decreased, indicating that the power consumption for agitation of food waste can be reduced.

Generation of calibration standard gases using capillary gas divider: uncertainty measurement and method validation (다중 모세관을 이용한 교정용 표준가스의 제조: 불확도와 유효성 평가)

  • Lee, Sangyun;Hwang, Eun-Jin;Jung, Hye-Ja;Lee, Kwang-Woo;Chun, Ki-Joon
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.369-375
    • /
    • 2006
  • Calibration gas mixtures were prepared using dynamic volumetric method according to ISO 6145-5 and the uncertainty was evaluated. Ten identical capillaries with 0.25 mm in inner diameter and 50 cm in length were applied in this system. Dilution ratio of parent gas was determined by the number of capillaries that passes parent gas and that passes balance gas through. Capillaries were made of Teflon which had good chemical stability against adsorption of gaseous substances. Mechanical valves were introduced in this system in order to minimize the thermal effect of solenoid valves. Concentration of prepared gases were compared with master grade standard gases in cylinders made by RiGAS Co. and calibration of the instrument were completed using comparison method according to ISO 6143. Experimental results showed that the coefficient of variance of diluted oxygen standard gases showed less then 0.2% in most dilution range, that of diluted hydrogen sulfide standard gases showed less then 1.0%. Therefore, it is proven that the standard gases prepared by this system are appropriate to be used as a calibration standards in ambient monitoring, etc.

Characterization of Repeated Deactivation and Subsequent Re-activation of Photocatalyst Used in Two Alternatively-operating UV/photocatalytic Reactors of Waste-air Treating System (교대로 운전되는 두 개의 UV/광촉매반응기로 구성된 폐가스 처리시스템에서의 광촉매의 비활성화 및 재생 특성)

  • Lee, Eun Ju;Chung, Chan Hong;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.584-595
    • /
    • 2021
  • In this study, the correlation between operating stages of waste air-treating system composed of two alternatively-operating UV/photocatalytic reactors, and the deactivation of photocatalyst used in each operating stage, was investigated by instrumental analysis thereon. The repeated deactivation and subsequent re-generation of photocatalyst used in the waste air treating system of previous investigation performed by Lee and Lim (Korean Chem. Eng. Research, 59(4), 574-583(2021)), were characterized on virgin photocatalyst-carrying porous SiO2 media (A4), used photocatalyst-carrying porous SiO2 media (A1, A2 and A3) collected from the corresponding photocatalytic reactor upon 1st, 2nd, and 3rd run, respectively, regenerated photocatalyst-carrying porous SiO2 media upon 1 time-run (AD1) and 3 times regenerated photocatalyst-carrying porous SiO2 media upon 3 time-runs (AD3) by instrumental analysis including BET analysis, SEM, XPS, SEM-EDS and FT-IR. As a result, the proper regeneration-temperature for deactivated photocatalyst to be regenerated several times (more than 3 times), was suggested below 200 ℃. Such temperature of deactivated photocatalyst-regeneration was almost consistent to the one, according to BET analysis, at which tiny nano-pores blocked by adsorbed ethanol-oxidative and degraded intermediates (AEODI), were regenerated to be reopened through almost complete mineralization of AEODI. In particular, the results of XPS analysis indicated an incurrence of insignificant deactivation of photocatalysis upon 1st run of UV/photocatalytic reactor (A or C) of the previous investigation. In addition, the results of XPS analysis were consistent with the experimental results of the previous investigation in that 1) deactivation of photocatalyst incurred during 2nd run of the UV/photocatalytic reactor (A or C) resulted in decreased removal efficiency, by ca. 5% and 5%, of ethanol and hydrogen sulfide, respectively, compared with its 1st run; 2) there was insignificant difference between the removal efficiencies of its 2nd run and 3rd run. Furthermore, the removal efficiencies of ethanol and hydrogen sulfide for hypothetical 4th run of photocatalytic reactor in the previous investigation, using AD3, were expected to decrease, compared with its 3rd run, by much more than those for 2nd run in the previous investigation did, compared with its 1st run.