• Title/Summary/Keyword: Hydrogen fermentation

Search Result 224, Processing Time 0.021 seconds

A Study on Characteristic of the Bio-ethanol Produced on Fruit Wastes for Direct Ethanol Fuel Cell (DEFC) (과일폐기물을 이용한 DEFC용 바이오에탄올 제조 및 특성에 관한 연구)

  • Lee, Nam-Jin;Kim, Hyun-Soo;Cha, In-Su;Choi, Jeong-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.257-264
    • /
    • 2011
  • This study discribes performance of DEFC (Direct Ethanol Fuel Cell) utilized bio-ethanol based on fruit wastes. To produce the bio-ethanol, fruit wastes were treated at temperature $120^{\circ}C$ and 90minutes in acid pre-treatment. After pre-treatment was done, alcohol fermentation process was running. Initial alcohol concentration was 5%. Using the multi coloumn distillation system, more than 95% ethanol was distilled and each component of bio-ethanol was analyzed. In DEFC performance test, it was revealed that cell performance was much higher than that of ethanol. Comparing ethanol with mixed fuel (bio-ethanol (10%) + ethanol (90%)), the performance of ethanol was higher than that of mixed fuel. Even though the bio-ethanol from the fruit wastes is corresponded with transport ethanol standards, it thought that organic matter in bio-ethanol could be negative effect on fuel cell.

Effect of pH on Continuous Hydrogen Fermentation (연속반응실험에서 수소생성에 대한 pH 영향)

  • Lee, Young-Joon
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.149-153
    • /
    • 2004
  • The influences of pH on hydrogen production were also investigated over the pH range from 4.1 to 8.0 at HRT 10 hours. The hydrogen content for the produced gas was changed from 41 to 71% with corresponding pHs throughout this experiment. The produced hydrogen/carbon dioxide ratio was not vary significantly up to 6.0, then steepenly increased with increases in the pH. The maximal hydrogen yield was found to be 3.16 $\ell$/g sucrose at pH 5.0. Acetate production yield increased with increased pH, but butyrate production yield decreased with increased pH. Biomass yield increased with increased pH.

Hygienic Superiority of Kimchi (김치의 위생학적 우수성)

  • Kim, Yong-Suk;Shin, Dong-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.2
    • /
    • pp.91-97
    • /
    • 2008
  • Kimchi is a representative traditional food in Korea and a type of vegetable product that is the unique complex lactic acid fermentation in the world. It can be considered as a unique fermented food generated by various flavors, which are not included in raw materials, that can be generated by mixing and fermenting various spices and seasonings, such as red pepper powder, garlic, ginger, and salted fish, added to Chinese cabbages. Functionalities in Kimchi have been approved through several studies and the probiotic function that is mainly based on lactic acid bacteria including their physical functions in its contents has also verified. Studies on the verification of the safety of Kimchi including its physiological functions have been conducted. In particular, the function of lactic acid bacteria, which is a caused of the fermentation of Kimchi. Although the lactic acid bacteria contributed to the fermentation of Kimchi is generated from raw and sub-materials, the lactic acid bacteria attached on Chinese cabbages has a major role in the process in which the fermentation temperature and dominant bacteria are also related to the process. The salt used in a salt pickling process inhibits the growth of the putrefactive and food poisoning bacteria included in the fermentation process of Kimchi and of other bacteria except for such lactic acid bacteria due to the lactic acid and several antimicrobial substances generated in the fermentation process, such as bacteriocin and hydrogen peroxide. In addition, the carbon dioxide gas caused by heterolactic acid bacteria contributes to the inhibition of aerobic bacteria. Furthermore, special ingredients included in sub-materials, such as garlic, ginger, and red pepper powder, contribute to the inhibition of putrefactive and food poisoning bacteria. The induction of the change in the intestinal bacteria as taking Kimchi have already verified. In conclusion, Kimchi has been approved as a safety food due to the fact that the inhibition of food poisoning bacteria occurs in the fermentation process of Kimchi and the extinction of such bacteria.

Photoproduction of Hydrogen from Acetate by Rhodopseudomonas: Effect of Culture Conditions and Sequential Dark/Light Fermentation

  • Oh, You-Kwan;Seol, Eun-Hee;Park, Sung-Hoon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.422-427
    • /
    • 2003
  • Rhodopseudomonas palustris P4 can produce $H_2$ either from CO by water-gas shift reaction or from various sugars by anaerobic fermentation. Fermentative $H_2$ production by P4 is fast, but its yield is relatively low due to the formation of various organic acids. In order to increase $H_2$ production yield from glucose, P4 was investigated for the photo-fermentation of acetate which is a major by-product of fermentative $H_2$ production. Experiments were performed in batch modes using both light-grown and dark-grown cells. When the dark-grown P4 was challenged with light and acetate, $H_2$ was produced with the consumption of acetate after a lag period of 25 h. $H_2$ production was inhibited when a nitrogen source, especially ammonium, is present. When the dark-fermentation broth containing acetate was adopted for photo-fermentation with light-grown cells, $H_2$ production and concomitant acetate consumption occurred without a lag period. The $H_2$ yield was estimated as 2.4 - 2.8 mol $H_2/mol$ acetate and the specific $H_2$ production rate was as 9.8 ml $H_2/g$ cell${\cdot}$h, The fact that a single strain can perform both dark- and light-fermentation gives a great advantage in process development Compared to a one-step dark-fermentation, the combined dark- and light-fermentation can increase the $H_2$ production yield on glucose by two-fold.

  • PDF

Microorganisms Involved in Natural Fermentation of Asparagus cochinchinensis Roots and Changes in Efficacies after Fermentation (천문동 뿌리의 자연발효에 관여하는 미생물 및 발효 후 효능 변화)

  • Kim, Min-Jee;Shin, Na Rae;Lee, Myeong-Jong;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.2
    • /
    • pp.96-105
    • /
    • 2018
  • Objectives: The aim of this study was to examine the effect of Asparagus cochinchinensis (AC) and fermented AC (fAC) on microorganisms and efficacies. Methods: AC was fermented for four weeks without using any bacterial strains. Then we investigated fermentation characteristics including potential of hydrogen (pH), total sugar, microbial profiling and antioxidant compound contents such as total polyphenol and total flavonoid. The anti-obesity effects of AC and fAC were evaluated by using Oil Red O staining in 3T3-L1 adipocyte. Also anti-diabetic effects of them were evaluated by using 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) uptake in C2C12 skeletal muscle cell. Results: Both pH and total sugar of fAC were decreased significantly compared to unfermented AC. And the abundance of total bacteria and lactic acid bacteria increased during fermentation, especially Lactobacillus plantarum. Also fermentation of AC increased the content of total polyphenol. On the metabolic aspects, we found that AC and fAC suppressed fat accumulation. Conclusions: After four weeks of fermentation, AC increased concentrations of active compounds, altered microbial composition, and inhibited fat accumulation such as triglyceride. These results indicate that fermentation of AC might be a beneficial therapeutic approach for obesity.

Evaluation of Characterization During Start-up of Anaerobic Digestion Via Various Seeding Methods (음식물류 폐기물의 혐기성 소화 시 식종 방법에 따른 start-up 특성 평가)

  • LEE, CHAE-YOUNG;HAN, SUN-KEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.533-539
    • /
    • 2016
  • This study was performed to evaluate the characteristics of start-up of anaerobic digestion from food waste with different inoculum ratios. The hydrogen yield was similar with different inoculum ratios. The hydrogen production rate increased with increasing inoculum ratio. But the specific hydrogen production rate decreased with increasing inoculum ratio. Total volatile fatty acids composition analysis showed that butyrate and acetate were the prevalent products in all reactors, followed by lactate and propionate. The acetate was most prevalent product in reactors at $X_0/S_0=0.080$ and 0.159. But in reactors at $X_0/S_0=0.239$ and 0.318, butyrate accounted for greater than 50% of the total volatile fatty acids.

Optimization of Organic Compounds and Hydrogen Production in Dark Fermentation using Chlamydomonas reinhardtii (Chlamydomonas reinhardtii를 이용한 암반응에서의 수소 및 유기물 생산 최적화)

  • 공경택;심상준;박대원;김미선;박태현
    • KSBB Journal
    • /
    • v.18 no.1
    • /
    • pp.51-54
    • /
    • 2003
  • The objective of this study was to optimize culture conditions and to produce hydrogen and organic compounds using microalga Chlamydomonas reinhardtii. First of all, C. reinhardtii UTEX 90 was chosen from the three kinds of strains in terms of their hydrogen and organic compound productivity. The optimum $\textrm{CO}_2$ concentration range of C. reinhardtii UTEX 90 was 1to 3%. We tested two medium, which are popular in this microalga culture; Brostol's medium and TAP medium (8). The cell growth in TAP medium was found to be higher than a Brostol's medium. Optimum culture with 3% of $\textrm{CO}_2$ in TAP medium produced the most hydrogen ($0.5\mu$ mol/ mg DCW), though Bristol's medium produced twice as much total organics.

- Invited Review - Hydrogen production and hydrogen utilization in the rumen: key to mitigating enteric methane production

  • Roderick I. Mackie;Hyewon Kim;Na Kyung Kim;Isaac Cann
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.323-336
    • /
    • 2024
  • Molecular hydrogen (H2) and formate (HCOO-) are metabolic end products of many primary fermenters in the rumen ecosystem. Both play a vital role in fermentation where they are electron sinks for individual microbes in an anaerobic environment that lacks external electron acceptors. If H2 and/or formate accumulate within the rumen, the ability of primary fermenters to regenerate electron carriers may be inhibited and microbial metabolism and growth disrupted. Consequently, H2- and/or formate-consuming microbes such as methanogens and possibly homoacetogens play a key role in maintaining the metabolic efficiency of primary fermenters. There is increasing interest in identifying approaches to manipulate the rumen ecosystem for the benefit of the host and the environment. As H2 and formate are important mediators of interspecies interactions, an understanding of their production and utilization could be a significant starting point for the development of successful interventions aimed at redirecting electron flow and reducing methane emissions. We conclude by discussing in brief ruminant methane mitigation approaches as a model to help understand the fate of H2 and formate in the rumen ecosystem.

Carbon and Energy Balances of Glucose Fermentation with Hydrogen-producing Bacterium Citrobacter amalonaticus Y19

  • Oh, You-Kwan;Park, Sung-Hoon;Seol, Eun-Hee;Kim, Seo-Hyoung;Kim, Mi-Sun;Hwang, Jae-Woong;Ryu, Dewey D.Y.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.532-538
    • /
    • 2008
  • For the newly isolated $H_2$-producing chemoheterotrophic bacterium Citrobacter amalonaticus Y19, anaerobic glucose metabolism was studied in batch cultivation at varying initial glucose concentrations (3.5-9.5 g/l). The carbon-mass and energy balances were determined and utilized to analyze the carbon metabolic-pathways network. The analyses revealed (a) variable production of major metabolites ($H_2$, ethanol, acetate, lactate, $CO_2$, and cell mass) depending on initial glucose levels; (b) influence of NADH regeneration on the production of acetate, lactate, and ethanol; and (c) influence of the molar production of ATP on the production of biomass. The results reported in this paper suggest how the carbon metabolic pathway(s) should be designed for optimal Hz production, especially at high glucose concentrations, such as by blocking the carbon flux via lactate dehydrogenase from the pyruvate node.

Isolation of Hydrogen-producing Bacteria from Granular Sludge of an Upflow Anaerobic-Sludge Blanket Reactor

  • Oh, You-Kwan;Park, Mi-So;Seol, Eun-Hee;Lee, Sang-Joon;Park, Sunghoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.1
    • /
    • pp.54-57
    • /
    • 2003
  • H$_2$-producing bacteria were isolated from anaerobic granular sludge. Out of 72 colonies (36 grown under aerobic conditions and 36 under anaerobic conditions) arbitrarily chosen from the agar plate cultures of a Suspended sludge, 34 colonies (15 under aerobic conditions and 19 under anaerobic conditions) produced H2 under anaerobic conditions. Based on various biochemical tests and microscopic observations, they were classified into 13 groups and tentatively identified as follows: From aerobic isolates, Aeromonar spp. (7 strains), Pseudomonas spp. (3 strains), and Vibrio spp. (5 strains); from anaerobic isolates, Actinomyces spp. (11 Strains), Clostridium 5pp. (7 strains). and Porphyromonas sp. When glucose was used as the carbon substrate, all isolates showed a similar cell density and a H$_2$ production yield in the batch cultivations after 12 h (2.24-2.74 OD at 600 nm and 1.02-1.22 mol H$_2$/mol glucose, respectively). The major fermentation by-products were ethanol and acetate for the aerobic isolates, and ethanol, acetate and propionate for the anaerobic isolates. This study demonstrated that several H$_2$ producers in an anaerobic granular sludge exist En large proportions and their performance in terms of H$_2$ production is quite similar.