• Title/Summary/Keyword: Hydrogen explosion

Search Result 155, Processing Time 0.025 seconds

Development of On-axis Raman Lidar System for Remotely Measuring Hydrogen Gas at Long Distance (원거리 수소 가스 원격 계측을 위한 On-axis 라만 라이다 장치 개발)

  • Choi, In Young;Baik, Sung Hoon;Lim, Jae Young;Cha, Jung Ho;Kim, Jin Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.3
    • /
    • pp.119-125
    • /
    • 2018
  • Hydrogen gas is an important and promising energy resource that has no emissions of pollutants during power generation. However, hydrogen gas is very dangerous because it is colorless, odorless, highly flammable, and explosive at low concentration. Conventional techniques for hydrogen gas detection are very difficult for measuring the hydrogen gas distribution at long distances, because they sample the gas to measure its concentration. Raman lidar is one of the techniques for remotely detecting hydrogen gas and measuring the range of the hydrogen gas distribution. A Raman lidar system with an on-axis optical receiver was developed to improve the range of hydrogen gas detection at long distance. To verify the accuracy and improvement in the range of detecting the hydrogen gas, experiments measuring the hydrogen gas concentration are carried out using the developed on-axis Raman lidar system and a gas chamber, to prevent explosion of the hydrogen gas. As a result, our developed on-axis Raman lidar system can measure a minimum hydrogen gas concentration of 0.66 volume percent at a distance of 50 m.

Simulation Study of Hydrogen Liquefaction Process Using Helium Refrigeration Cycle (헬륨 냉동사이클을 이용한 수소액화 공정모사 연구)

  • Park, Hoey Kyung;Park, Jin-Soo
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.153-163
    • /
    • 2020
  • Compared to gaeous hydrogen, liquid hydrogen has approximately 1/800 volume, 800 times higher volumetric energy density at the same pressure, and the advantage of lower explosion risk and easier transportation than gaseous hydrogen. However, hydrogen liquefaction requires larger scale facility investment than simple compression storage method. Therefore, the research on energy-saving hydrogen liquefaction processes is highly necessary. In this study, helium/neon (mole ratio 80 : 20) refrigeration cycle was investigated as the main refrigeration process for hydrogen liquefaction. Process simulation for less energy consumption were carried out using PRO/II with PROVISION V10.2 of AVEVA. For hydrogen liquefaction, energy consumption was compared in three cases: Using a helium/neon refrigerant cycle, a SMR+helium/neon refrigerant cycle, and a C3-MR+helium/neon refrigerant cycle. As a result, the total power consumptions of compressors required to liquefy 1 kg of hydrogen are 16.3, 7.03 and 6.64 kWh, respectively. Therefore, it can be deduced that energy usage is greatly reduced in the hydrogen liquefaction process when the pre-cooling is performed using the SMR process or the C3MR process, which have already been commercialized, rather than using only the helium/neon refrigeration cycle for the hydrogen liquefaction process.

A Study on the Evaluations of Damage Impact due to VCE in Liquid Hydrogen Charging Station (액화수소 충전스테이션에서 VCE로 인한 피해영향평가에 관한 연구)

  • Lee, Suji;Chon, Young Woo;Lee, Ik Mo;Hwang, Yong Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.56-63
    • /
    • 2017
  • Hydrogen charging station was invested and supported around the world. In this study, the extent of damage caused by VCE in the charging station handling liquefied hydrogen was calculated, and the human and material damage was estimated through the Probit model. In addition The optimal height of vent stack for low temperature hydrogen was set. The damage range is 8.24m in small scale, 14.10m in medium scale, and 22.38m in large scale based on interest overpressure 6.9kPa. In case of death due to pulmonary hemorrhage, 50m of the small and medium scale and 100m of the large scale were injured. Structural damage was 200m in small scale, 300m in medium scale and 500m in large scale. The optimum height of the vent stack is 4.7 m in small scale, 8.8 m in medium scale and 16.9 m in large scale.

Metal Nano Powders as a New Getter Material (새로운 게터소재로서의 금속 나노 분말)

  • Kim, Won-Baek;Park, Je-Shin;Suh, Chang-Youl;Chang, Han-Kwon;Lee, Jae-Chun;Park, Mi-Young
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.56-62
    • /
    • 2007
  • Getter property of nano-sized metallic powders was evaluated as a possible candidate for the future getter material. For the purpose, Ti powders of about 50 nm were prepared by electrical wire explosion. Commercial Ti powders of about 22 micrometer were tested as well for comparison. The room-temperature hydrogen-sorption speed of nano-sized Ti powders was $1.34\;L/sec{\cdot}cm^{2}$ which was more than 4 times higher than that of micron-sized ones. The value is comparable to or even higher than those of commercial products. Its sorption speed increases with activation temperature up to $500^{\circ}C$ above which it deteriorates due to low-temperature sintering effect of nano-sized particles.

Design and Analysis of Hydrogen Production and Liquefaction Process by Using Liquefied Natural Gas (액화천연가스(LNG)를 사용한 수소 생산 및 액화 공정 개발)

  • Noh, Wonjun;Park, Sihwan;Lee, Inkyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.200-208
    • /
    • 2021
  • Compare to the gaseous hydrogen, liquid hydrogen has various advantages: easy to transport, high energy density, and low risk of explosion. However, the hydrogen liquefaction process is highly energy intensive because it requires lots of energy for refrigeration. On the other hand, the cold energy of the liquefied natural gas (LNG) is wasted during the regasification. It means there are opportunities to improve the energy efficiency of the hydrogen liquefaction process by recovering wasted LNG cold energy. In addition, hydrogen production by natural gas reforming is one of the most economical ways, thus LNG can be used as a raw material for hydrogen production. In this study, a novel hydrogen production and liquefaction process is proposed by using LNG as a raw material as well as a cold source. To develop this process, the hydrogen liquefaction process using hydrocarbon mixed refrigerant and the helium-neon refrigerant is selected as a base case design. The proposed design is developed by applying LNG as a cold source for the hydrogen precooling. The performance of the proposed process is analyzed in terms of energy consumption and exergy efficiency, and it is compared with the base case design. As the result, the proposed design shows 17.9% of energy reduction and 11.2% of exergy efficiency improvement compare to the base case design.

A Study on Classification of Explosion Hazardous Area for Facilities using Lighter-than-Air Gases (공기보다 가벼운 가스 사용시설의 폭발위험장소 설정방안에 대한 연구)

  • Yim, Ji-Pyo;Chung, Chang-Bock
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.2
    • /
    • pp.24-30
    • /
    • 2014
  • There have been controversies over whether explosion hazardous area(EHA) should be classified for facilities which use lighter-than-air gases such as city gas, hydrogen and ammonia. Two view points are confronting each other: an economic piont of view that these gases are lighter than air and disperse rapidly, hence do not form EHA upon release into the atmosphere, and a safety point of view that they are also inflammable gases, hence can form EHA although the extent is limited compared to heavy gases. But various standards such as KS, IEC, API, NFPA do not exclude light gases when classifying EHA and present examples of EHA for light gas facilities. This study calculates EHA using the hypothetical volume in the IEC code where the hole sizes required for the calculation were selected according to various nominal pipe sizes in such a way to conform to the EHA data in the API code and HSL. Then, 25 leakage scenarios were suggested for 5 different pipe sizes and 5 operating pressures that cover typical operating conditions of light gas facilities. The EHA for the minimum leakage scenario(25 mm pipe, 0.01MPa pressure) was found to correspond to a hypothetical volume larger than 0.1 $m^3$(medium-level ventilation). This confirms the validity of classifying EHA for facilities using lighter-than-air gases. Finally, a computer program called HACPL was developed for easy use by light gas facilities that classifies EHA according to operating pressures and pipe sizes.

Numerical Study on the Effect of Area Changes in Air Inlets and Vent Ports on the Ventilation of Leaking Hydrogen (급·배기구 면적 변화가 누출 수소 환기에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.385-393
    • /
    • 2022
  • Hydrogen has reduced greenhouse gas (GHG) emissions, the main cause of global warming, and is emerging as an eco-friendly energy source for ships. Hydrogen is a substance with a lower flammability limit (LFL) of 4 to 75% and a high risk of explosion. To be used for ships, it must be sufficiently safe against leaks. In this study, we analyzed the effect of changes in the area of the air inlet / vent port on the ventilation performance when hydrogen leaks occur in the hydrogen tank storage room. The area of the air inlet / vent port is 1A = 740 mm × 740 mm, and the size and position can be easily changed on the surface of the storage chamber. Using ANSYS CFX ver 18.1, which is a CFD commercial software, the area of the air inlet / vent port was changed to 1A, 2A, 3A, and 5A, and the hydrogen mole fraction in the storage chamber when the area changed was analyzed. Consequently, the increase in the area of the air inlet port further reduced the concentration of the leaked hydrogen as compared with that of the vent port, and improved the ventilation performance of at least 2A or more from the single air inlet port. As the area of the air inlet port increased, hydrogen was uniformly stratified at the upper part of the storage chamber, but was out of the LFL range. However, simply increasing the area of the vent port inadequately affected the ventilation performance.

Consequence Analysis of Hydrogen Filling Stations based on Cascade Compressing Systems (케스케이드 방식 압축시스템 기반의 수소충전소에 대한 정성적 위험성평가)

  • Ahn, Byeong-Jun;Rhim, Jong-Kuk
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.13-21
    • /
    • 2021
  • Because of the recent expansion of hydrogen vehicle supply, the installation of hydrogen filling station is expected to gradually expand. This study attempts to predict the damage scale and propose a safer design form based on the scenario that assumes the worst case of a hydrogen station. A Flacs solver using computational fluid dynamics (CFD) was used to predict the damage scale, and the accuracy was verified by comparing it with the experimental results of previous researchers. The damage scale prediction was conducted for hydrogen leakage and explosion, and the prediction target was the KR model based on the measured values. And as a comparative review model, a roofless model was selected without a ceiling. As a result of analyzing the two models, it was possible to confirm the accumulation and retention of hydrogen gas up to 60 vol% or more in the KR model, whereas in the case of the Roofless model, the phenomenon of discharge and diffusion to the outside of the charging station by riding the wall after leakage. I was able to check. In conclusion, it was reviewed that the type of hydrogen charging station without ceiling is more advantageous for safety than the hydrogen filling station model.

A Study on Safety of Hydrogen Station (수소충전소의 안전성에 관한 연구)

  • Ko, Jae-Wook;Lee, Dae-Hee;Jung, In-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2009
  • A safety assessment was performed through the process analysis of hydrogen station. The purpose of this study provides basic information for the standard establishment about hydrogen stations. The processes of hydrogen stations were classified by four steps (process of manufacture, compression, storage, charge). FMEA (Failure Mode and Effect Analysis) method was applied to evaluate safety. Each risk element is following; S (severity), O (occurrence), D (detection). And the priority of order was decided by using RPN (Risk Priority Number) value multiplying three factors. Scenarios were generated based on FMEA results. And consequence analysis was practiced using PHAST program. In the result of C.A, jet fire and explosion were shown as accident types. In case of leakage of feed line in PSA process, concentration of CO gas is considered to prevent CO gas poisoning when the raw material that can product CO gas was used.

  • PDF

Gas detonation cell width prediction model based on support vector regression

  • Yu, Jiyang;Hou, Bingxu;Lelyakin, Alexander;Xu, Zhanjie;Jordan, Thomas
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1423-1430
    • /
    • 2017
  • Detonation cell width is an important parameter in hydrogen explosion assessments. The experimental data on gas detonation are statistically analyzed to establish a universal method to numerically predict detonation cell widths. It is commonly understood that detonation cell width, ${\lambda}$, is highly correlated with the characteristic reaction zone width, ${\delta}$. Classical parametric regression methods were widely applied in earlier research to build an explicit semiempirical correlation for the ratio of ${\lambda}/{\delta}$. The obtained correlations formulate the dependency of the ratio ${\lambda}/{\delta}$ on a dimensionless effective chemical activation energy and a dimensionless temperature of the gas mixture. In this paper, support vector regression (SVR), which is based on nonparametric machine learning, is applied to achieve functions with better fitness to experimental data and more accurate predictions. Furthermore, a third parameter, dimensionless pressure, is considered as an additional independent variable. It is found that three-parameter SVR can significantly improve the performance of the fitting function. Meanwhile, SVR also provides better adaptability and the model functions can be easily renewed when experimental database is updated or new regression parameters are considered.