• Title/Summary/Keyword: Hydrogen embrittlement

Search Result 169, Processing Time 0.026 seconds

Electrochemical Corrosion and Hydrogen Diffusion Behaviors of Zn and Al Coated Hot-Press Forming Steel Sheets in Chloride Containing Environments (아연 및 알루미늄이 도금된 Hot-Press Forming 강의 염화물 환경 내 전기화학적 부식 및 수소확산거동)

  • Park, Jin-seong;Lee, Ho Jong;Kim, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.286-294
    • /
    • 2018
  • Hot-press forming(HPF) steel can be applied successfully to auto parts because of its superior mechanical properties. However, its resistances to aqueous corrosion and the subsequent hydrogen embrittlement(HE) decrease significantly when the steel is exposed to corrosive environments. Considering that the resistances are greatly dependent on the properties of coating materials formed on the steel surface, the characteristics of the corrosion and hydrogen diffusion behaviors regarding the types of coating material should be clearly understood. Electrochemical polarization and impedance measurements reveal a higher corrosion potential and polarization resistance and a lower corrosion current of the Al-coating compared with Zn-coating. Furthermore, it was expected that the diffusion kinetics of the hydrogen atoms would be much slower in the Al-coating, and this would be due mainly to the much lower diffusion coefficient of hydrogen in the Al-coating with a face-centered cubic structure. The superior surface inhibiting effect of the Al-coating, however, is degraded by the formation of local cracks in the coated layer under severe stress conditions, and therefore further study will be necessary to gain a clearer understanding of the effect of cracks formed on the coated layer on the subsequent corrosion and hydrogen diffusion behaviors.

A study of the sulfide stress corrosion cracking characteristic of A106 Gr B steep pipe weldment (황화수소환경에서 A106 Gr-B 강 용접부의 응력부식균열 특성 평가)

  • Lee, Gyu-Young;Park, Kwang-Jin;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.114-119
    • /
    • 2007
  • Sulfide stress cracking (SSC) of materials exposed to oilfield environment containing hydrogen sulfide $(H_{2}S)$ has been recognized as a materials failure problem. Laboratory data and field experience have demonstrated that extremely low concentration of $H_{2}S$ may be sufficient to lead to SSC failure of susceptible materials. In some cases, $(H_{2}S)$ can act synergistically with chlorides to produce corrosion and cracking failures. SSC is a form of hydrogen embrittlement that occurs in high strength steels and in localized hard zones in weldment of susceptible materials. In the heat-affected zones adjacent to welds, there are often very narrow hard zones combined with regions of high residual stress that may become embrittled to such an extent by dissolved atomic hydrogen. On the base of understanding on sulfide stress cracking and its mechanism, SSC resistance for the several materials, those are ASTM A106 Gr B using in the oil industries, are evaluated.

  • PDF

Suppression of Interfacial Segregation and Control of Microstructure for Improvement of Mechanical Properties of W-Ni-Fe Heavy Alloy (계면편석 억제와 미세구조 조절에 의한 중합금의 기계적성질 향상)

  • 강석중
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1993.11a
    • /
    • pp.3-3
    • /
    • 1993
  • In mechanical testing of W-Ni-Pe heavy alloys, the cracks nucleate at W/W interface and propagate through W/ Imatrix interface or through matrix phase together with the cleavage of W grains. The mechanical properties can therefore be improved by control of the interfacial strength and area. In this presentation, some experimental result and techniques on this subject will be reviewed and discussed. The hydrogen embrittlement caused by the hydrogen segregation at interfaces during sintering in an hydrogen atmosphere can be removed by an heat-treattnent in vacuum or in an inert atmosphere. The heat-treatment condition can be estimated by using a diffusion equation for a cylindrical shape. The mechanical properties, in particular the impact property, are degraded by the segregation of non-metallic impurities, such as Sand P. The degradation can be prevented by adding a fourth element, such as La or Ca, active with the non-metallic impurities. The cyclic heat-treatment at usual heat-treattnent tempemture causes the penetration of matrix between W/W grain boundaries and results in remarkable increase in impact energy. This is due to an increase in the area of ductile failure during the impact test. The instability of W/matrix interface casued by addition of Mo or Re can be controlled by using W powders of different size. The increase in the interfacial area in found to be related to the presence of non-equilibrium pure W gmins among W(Mo or Re) solid solution gmins.

  • PDF

Experimental Study on Corrosion Characteristics of 1.25Cr-0.5Mo in the 1st-mathanator reactor for Synthetic Natural Gas according to Gas Compositions (1.25Cr-0.5Mo강을 이용한 합성가스 조성 변화에 따른 SNG 1차반응기의 부식특성에 관한 실험적 연구)

  • Kim, Jin-Hyun;Cho, Honghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.709-716
    • /
    • 2016
  • Recently, the operating conditions of the various mechanical structures have become more severe and the running time has become longer as the development of plant equipment increases with the introduction of high technology. Thus, the reliability of the system and its accessories is becoming a problem. Normally, synthetic natural gas (SNG) plants use 1.25Cr-0.5Mo or 2.25Cr-1Mo heat resistant steel according to the operating conditions. In this study, a lab-scale reactor was set up using 1.25Cr-0.5Mo steel, in order to carry out corrosion tests for producing synthetic natural gas. The corrosive characteristics were investigated under 1st-methanator operating conditions and fundamental data about the durability and reliability were obtained by using the experimental test. The analysis of results obtained on the durability of the reactor under emission and injection compositions showed that the hydrogen embrittlement caused by hydrogen and the oxidation corrosion caused by H2O had the most effect on the durability of 1.25Cr-0.5Mo steel in the SNG reactor. However, the hydrogen embrittlement and oxidation corrosion occurred simultaneously under emission conditions, so that the corrosion of the material increased suddenly after a long operating time. Besides, the corrosion of the 1.25Cr-0.5Mo steel under the injection composition was faster than that under the emission composition.

The Effects of Additional Gases(C,H,O) on Adhesive strength Ti$_{x}$N Films Prepared by the DC Magetron Suttering Method (DC Magetron Suttering법으로 제작한 Ti$_{x}$N 박막의 밀착력에 미치는 첨가원소(C,H,O))

  • 김학동;조성식
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.3
    • /
    • pp.142-150
    • /
    • 1998
  • Stainless steel is being used widely for various purposes due to its good corrosion resistance. There has been much research to produce colored stainless steel by several methods such as anodizing and ion plating. In this experiment, we coated TiN(C,O,H)films SUS304 substraate with the DC magnetron spttering system made by Leybold Heraeus and studied the interlater structure and abhesive strength of the films as a function of additional gases, acetylene, hydrogen and oxygen. When the acetylene gas was added into the chamber, the specimen with the interlayer phase had good adhesion due to the toughness of the $\gamma'-Fe_4N$ plase induced from a solid solution of carbon atoms, while low adhesion appeared on the specimen of the non interlayer phase. The formation of the interlayer phase($\gamma'-Fe_4N$) was due to hydrogen embrittlement and internal stress induced by $\gamma'-Fe_4N$ formation in the interlayer. We could fine the interlayer phase ($\gamma'-Fe_4N$) at the interface between the film and the substrate of the TEM image when $\gamma'-Fe_4N$ was detected by the X-ray duffraction metheod.

  • PDF

Spent fuel simulation during dry storage via enhancement of FRAPCON-4.0: Comparison between PWR and SMR and discharge burnup effect

  • Dahyeon Woo;Youho Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4499-4513
    • /
    • 2022
  • Spent fuel behavior of dry storage was simulated in a continuous state from steady-state operation by modifying FRAPCON-4.0 to incorporate spent fuel-specific fuel behavior models. Spent fuel behavior of a typical PWR was compared with that of NuScale Power Module (NPMTM). Current PWR discharge burnup (60 MWd/kgU) gives a sufficient margin to the hoop stress limit of 90 MPa. Most hydrogen precipitation occurs in the first 50 years of dry storage, thereby no extra phenomenological safety factor is identified for extended dry storage up to 100 years. Regulation for spent fuel management can be significantly alleviated for LWR-based SMRs. Hydride embrittlement safety criterion is irrelevant to NuScale spent fuels; they have sufficiently lower plenum pressure and hydrogen contents compared to those of PWRs. Cladding creep out during dry storage reduces the subchannel area with burnup. The most deformed cladding outer diameter after 100 years of dry storage is found to be 9.64 mm for discharge burnup of 70 MWd/kgU. It may deteriorate heat transfer of dry storage by increasing flow resistance and decreasing the view factor of radiative heat transfer. Self-regulated by decreasing rod internal pressure with opening gap, cladding creep out closely reaches the saturated point after ~50 years of dry storage.

A Study of Fluid Structure Interaction Analysis and Coating Characteristics of a Two-stage Pressure Reduction Hydrogen Regulator (2단 감압 수소레귤레이터의 연성해석 및 도금특성에 관한 연구)

  • Song, Jae-Wook;KIM, Seung-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2021
  • In this study, shape design and material selection were carried out for a two-stage pressure-reducing regulator to compensate for the shortcomings of a one-stage mechanical decompression regulator. The shape of the contact surface of the depressurization unit was considered, material was selected, and the shape was designed to compensate for the pulsation and slow response through the two-stage decompression and to solve the problem of high pressure deviation. In terms of airtightness, the deformation amount of TPU showed a small amount of displacement of up to 15.82%. Considering the fact that it is applicable to various hydrogen fuel supply systems by securing universality by applying electronic solenoids to the second pressure reduction, magnetic materials were selected. The hydrogen embrittlement and corrosion resistance were evaluated to verify the plating process. Surface corrosion did not occur in only the case of Cr plating. The elongation during the corrosion process was compared using a tensile test, and there was a difference within 2%.

EFFECT OF POST-WELD HEAT TREATMENT OF MARINE STRUCTURE STEEL DURING CATHODIC PROTECTION

  • Kim, Seong-Jong;Masazumi Okido;Kim, Jin-Gyeong;Moon, Kyung-Man
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.273-275
    • /
    • 2002
  • The effect of post-weld heat treatment (PWHT) of marine structures steel was investigated at electrochemical viewpoint. In addition, slow strain rate test (SSRT) was carried out to investigate both electrochemical and mechanical properties by PWHT effect during impressed current cathodic protection. The optimum cathodic protection potential by SSRT was -770 mV(SCE). At the applied cathodic protection potential of -770 mV -850 mV(SCE), the fracture morphology was dimple pattern with ductile fracture, while it was transgranular pattern (Q.C: quasi cleavage) under -875 mV(SCE).

  • PDF

Corrosion of Titanium Alloys in High Temperature Seawater

  • Pang, J.J.;Blackwood, D.J.
    • Corrosion Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.195-199
    • /
    • 2015
  • Materials of choice for offshore structures and the marine industry have been increasingly favoring materials that offer high strength-to-weight ratios. One of the most promising families of light-weight materials is titanium alloys, but these do have two potential Achilles' heels: (i) the passive film may not form or may be unstable in low oxygen environments, leading to rapid corrosion; and (ii) titanium is a strong hydride former, making it vulnerable to hydrogen embrittlement (cracking) at high temperatures in low oxygen environments. Unfortunately, such environments exist at deep sea well-heads; temperatures can exceed $120^{\circ}C$, and oxygen levels can drop below 1 ppm. The present study demonstrates the results of investigations into the corrosion behavior of a range of titanium alloys, including newly developed alloys containing rare earth additions for refined microstructure and added strength, in artificial seawater over the temperature range of $25^{\circ}C$ to $200^{\circ}C$. Tests include potentiodynamic polarization, crevice corrosion, and U-bend stress corrosion cracking.

A Study on Fatigue Strength Influence of Surface Treatment on High Strength Steel SNCM8 (고장력강 SNCM8재의 표면처리에 따른 피로강도 변화)

  • 강신현;차정환;배성인
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.697-703
    • /
    • 1996
  • Fatigue strength of high strengthsteels are variable with many different surface treatment. It is well known that residual compressive stress retard fatigue crack growth rate(or arrest crack). High strngth steels are manufactured by following process. Heat treatment, shot peening and chromium plating process. High strength steel(HRC40 or above) which are subjected to fatigue load and dynamic load, chromium plated parts shall be peened in accordance with requirements and baked after plating. The purpose of this paper is to compare and discuss the influence of surface treatment and hydrogen embrittlement on fatigue strength of high strength steel. Therefore, fatigue test was performed to investigate influence of surface treatment. The results shows that shot peening is very effect method in creasing fatigue life and after plating, baking process is essential to prevent hydogen failure. In this paper, the experimental investigation is made to clarify the influence of shot peening conditions and baking process on fatigue strength of high strength steel.

  • PDF