• Title/Summary/Keyword: Hydrogen economy

Search Result 173, Processing Time 0.03 seconds

A Numerical Analysis on the Stress Behavior Characteristics of a Pressure Vessel for Hydrogen Filling by FEM (유한요소법을 이용한 수소충전용 압력용기의 응력 거동특성에 관한 수치적 연구)

  • Chol, Seunghyun;Byonl, Sung Kwang;Kim, Yun Tae;Choi, Ha Young
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.38-44
    • /
    • 2022
  • As the supply of hydrogen charging stations for hydrogen supply accelerates due to the hydrogen economy revitalization policy, the risk of accidents is also increasing. Since most hydrogen explosion accidents lead to major accidents, it is very important to secure safety when using hydrogen energy. In order to utilize hydrogen energy, it is essential to secure the safety of hydrogen storage containers used for production, storage, and transportation of liquid hydrogen. In this paper, in order to evaluate the structural safety of a hydrogen-filled pressure vessel, the behavioral characteristics of gas pressure were analyzed by finite element analysis. SA-372 Grade J / Class 70 was used for the material of the pressure vessel, and a hexahedral mesh was applied in the analysis model considering only the 1/4 shape because the pressure vessel is axisymmetric. A finite element analysis was performed at the maximum pressure using a hydrogen gas pressure vessel, and the von Mises stress, deformation, and strain energy density of the vessel were observed.

A Study on the Analysis of Hazardous Risk Factors for Component in Hydrogen Station with Water Electrolysis Device (수전해 수소충전소 부품별 유해위험요인 분석)

  • Seo, Doo-Hyoun;Rhie, Kwang-Won;Kim, Tae-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.33-38
    • /
    • 2019
  • In order to invigoration the hydrogen economy, production of hydrogen needed for hydrogen charging stations and hydrogen fuel cells is needed. Generally, it is reforming used to coal fuel or natural gas. Other technologies include water electrolysis using pure water. Among these water electrolysis technologies, development is mainly carried out using PEM(Polymer Electrolyte Membrane electrolysis). In this study, the company aims to identify potential harmful hazards to PEM electrolysis hydrogen stations in the development stage among hydrogen charging stations. In order to find the hazardous factors in the facilities of the electrolysis and hydrogen charging stations, we were analyzed by Failure Mode & Effect Analysis(FMEA).

Technical Analysis and Future Development of Liquefied Hydrogen Carriers (액화수소 산적 운반선의 기술성 분석 및 향후 개발 과제)

  • Lee, Hyunyong;Kang, Hokeun;Roh, Gilltae;Jung, Inchul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.361-369
    • /
    • 2022
  • Countries worldwide are shifting to a hydrogen economy to respond to stringent environmental regulations, and the transport of hydrogen between countries is expected to increase in the mid- to long-term. Hydrogen is traded between countries in different forms, such as ammonia, liquid hydrogen, and LOHC (Liquid Organic Hydrogen Carrier), on account of the renewable energy resources in exporting countries, the type of hydrogen use in importing countries, and the technological maturity; however, it is not traded only in a singular form. As marine transportation of ammonia and LOHC is a relatively mature technology compared to that of liquid hydrogen, in this article, we analyzed the technical feasibility of liquid hydrogen carriers while identifying detailed technologies required for their future development and securing possible designs through various technical alternatives.

A Study on the Safety of Liquefied Hydrogen Refueling Station through Quantitative Risk Assessment (정량적 위험성평가를 통한 액화수소충전소 안전성 고찰)

  • Woo-Il Park;Seung-Kyu Kang;In-Woo Lee;Yun-Young Yang;Chul-Hee Yu
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.116-122
    • /
    • 2023
  • In addition to analyzing the hydrogen economy trends of the international community (Korea, the United States, Europe, Japan, etc.), which is being promoted to realize a carbon-neutral society, this study compared and analyzed the differences between the gaseous hydrogen refueling station, which is a key hydrogen-using facility close to the people, and a liquefied hydrogen refueling station that is scheduled to be built in the future. In addition, SAFETI, a quantitative risk assessment program, was used to analyze the safety of liquefied hydrogen refueling stations and In consideration of the individual and societal risks and the ranking of risks by facility, which are conditional allowable areas, a plan to improve safety such as facility layout was proposed

Evaluation of Hydrogen Storage Performance of Nanotube Materials Using Molecular Dynamics (고체수소저장용 나노튜브 소재의 분자동역학 해석 기반 성능 평가)

  • Jinwoo Park;Hyungbum Park
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.32-39
    • /
    • 2024
  • Solid-state hydrogen storage is gaining prominence as a crucial subject in advancing the hydrogen-based economy and innovating energy storage technology. This storage method shows superior characteristics in terms of safety, storage, and operational efficiency compared to existing methods such as compression and liquefied hydrogen storage. In this study, we aim to evaluate the solid hydrogen storage performance on the nanotube surface by various structural design factors. This is accomplished through molecular dynamics simulations (MD) with the aim of uncovering the underlying ism. The simulation incorporates diverse carbon nanotubes (CNTs) - encompassing various diameters, multi-walled structures (MWNT), single-walled structures (SWNT), and boron-nitrogen nanotubes (BNNT). Analyzing the storage and effective release of hydrogen under different conditions via the radial density function (RDF) revealed that a reduction in radius and the implementation of a double-wall configuration contribute to heightened solid hydrogen storage. While the hydrogen storage capacity of boron-nitrogen nanotubes falls short of that of carbon nanotubes, they notably surpass carbon nanotubes in terms of effective hydrogen storage capacity.

A STUDY OF A NUCLEAR HYDROGEN PRODUCTION DEMONSTRATION PLANT

  • Chang, Jong-Hwa;Kim, Yong-Wan;Lee, Ki-Young;Lee, Young-Woo;Lee, Won-Jae;Noh, Jae-Man;Kim, Min-Hwan;Lim, Hong-Sik;Shin, Young-Joon;Bae, Ki-Kwang;Jung, Kwang-Deog
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.111-122
    • /
    • 2007
  • The current energy supply system is burdened by environmental and supply problems. The concept of a hydrogen economy has been actively discussed worldwide. KAERI has set up a plan to demonstrate massive production of hydrogen using a VHTR by the early 2020s. The technological gap to meet this goal was identified during the past few years. The hydrogen production process, a process heat exchanger, the efficiency of an I/S thermochemical cycle, the manufacturing of components, the analysis tools of VHTR, and a coated particle fuel are key areas that require urgent development. Candidate NHDD plant designs based on a 200 MWth VHTR core and I/S thermochemical process have been studied and some of analysis results are presented in this paper.

A Study on V-I Characteristics of Hydrogen-Oxygen Gas Generator

  • Yang Seung-Heun;Kang Byoung-Hee;Gho Jae-Soek;Mok Hyung-Soo;Choe Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.109-112
    • /
    • 2001
  • Water-Electrolyzed gas is a mixed gas of the constant volume ratio 2:1 of Hydrogen and Oxygen gained from electrolyzed water, and it has better characteristics in the field of economy, efficiency of energy, and environmental intimacy than acetylene gas and LPG (Liquefied Petroleum Gas) used for existing gas welding equipment. So studies of Water-Electrolyzed gas are activity in progress nowaday, and commercially used as a source of thermal energy for gas welding in the industry. The object of this paper is getting a V-I characteristic of Hydrogen-Oxygen Gas Generator using DC source. First, chemical analysis of electrolysis is conducted and the relation of electrical energy and then chemical energy is investigated through the faraday's laws.

  • PDF

A Study on the Characteristics of Mixed Combustion for Hydrox Gas (Hydrox Gas 혼합연소특성 에 관한 연구)

  • Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.230-234
    • /
    • 2010
  • Hydrox gas which is the mixed gas of hydrogen and oxygen gained fromwater electrolysis is one of the new clean energy sources and thus is researched and commercialized actively. Especially, it can be replaced the fossil energy and shows the better quality compared to the conventional energy such as LPG or acetylene gas. The mixed gas of hydrogen and oxygen is gained from water electrolysis reaction. It has constant volume ratio 2:1 of hydrogen and oxygen, and it is used as a source of thermal energy by combustion reaction. Further, hydrox gas is nearly a mixed ideal gas combusting itself completely and its combustion shows anunique characteristics of implosion. In this study, temperature rise effects on hydrox gas content through mixed combustion test of kerosene and hydrox gas and LPG and hydrox gas are investigated. it is also confirmed that economy of mixed combustion of hydrox gas as effective energy is fairly probable.

Consideration of Fuel Economy Measurement Method for Environmentally Friendly Vehicles (환경친화적자동차 연료소비율 시험방법에 대한 고찰)

  • Lim, Jong-Soon;Kwon, Hae-Boung;Yong, Gee-Joong;Maeng, Jeong-Yoel
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.243-246
    • /
    • 2009
  • Fuel consumption measurement of Environmentally Friendly Vehicles is considerably different form internal combustion engine vehicle such as Carbon balance method. A practical method of fuel Consumption measurement has been developed for Hydrogen fuel cell vehicles and Electricity Vehicles. The purpose of this research is to measure the fuel consumption of hydrogen fuel cell vehicles and Electricity Vehicles on chassis-dynamometer and to give information when the research is intended to develop method to measure Energy consumption.

  • PDF

A Study on Analysis of the Hydrogen-Oxygen Gas Generator (수산화가스 발생기의 모델링 및 특성해석)

  • Kang, B.H.;Lee, J.M.;Mok, H.S.;Choe, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.198-201
    • /
    • 2001
  • The mixed gas of Hydrogen and Oxygen is gained from water electrolysis reaction. It has constant volume ratio 2 : 1 Hydrogen and Oxygen, and it is used as a source of thermal energy by combustion reaction. This gas has better characteristics in the field of economy, efficiency of energy, and environmental intimacy than acetylene gas and LPG used for gas welding machine. So several studies of this gas are actively in progress nowadays. The object of this study is the optimization of power condition in the side of electrical for the high efficiency of water electrolysis equipment. First, chemical analysis of electrolysis is conducted, and the relation of electrical energy and chemical energy is quantitatively investigated. For basic experiment, unit electrode of singular electrolysis electrode is manufactured and experimented, results are compared and analyzed with simulation, and the electrolysis is electrically equivalent.

  • PDF