• Title/Summary/Keyword: Hydrogen compression system

Search Result 49, Processing Time 0.028 seconds

A Comparative Study on the Performance of High Pressure Fuel Pumps for Compression Ignition Engines Fueled by DME (DME를 연료로 하는 압축 착화 엔진용 고압연료 펌프의 성능 비교 연구)

  • JAEHEE JEONG;WONJUN CHO;OCKTAECK LIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.1
    • /
    • pp.59-68
    • /
    • 2023
  • In this study, the performance of high-pressure fuel pumps was compared to find a high-pressure pump suitable for dimethyl ether (DME) fuel, and to establish a database of basic data on flow rates. The use of DME in compression ignition engines can reduce pollutant emissions. The cetane value of DME is higher than that of diesel fuel. The physical properties of DME are similar to liquefied gasoline gas (LPG), and when pressurized at a pressure of 6 bar or more, it changes from gas to liquid. Two types of high pressure pumps used in this study were independent injection type pump and a wobble plate type pump. Two high-pressure pumps with different injection types were compared. By measuring and comparing the performance changes of the two high-pressure pumps, a pump suitable for DME was selected and performance improvement measures were proposed. The changed experimental conditions to measure the performance change of the high pressure pump were increased in the units of 100 to 1,000 rpm and 100 rpm, and the experiment was performed at common rail pressures 300 and 400 bar. it was confirmed that the DME inside the fuel supply system remained in a liquid state through temperature sensors, pressure sensors, and pressure gauges. As a result of the experiment, it was confirmed that the flow rate discharged from the high-pressure fuel pump increased as the motor rotational speed increased, and the flow rate of the high-pressure fuel pump

Investigation of the Cryogenic Performance of the High Density Polyurethane Foam (고밀도 폴리우레탄 폼의 극저온 성능 분석)

  • Jeong-Hyeon Kim;Jeong-Dae Kim;Tae-Wook Kim;Seul-Kee Kim;Jae-Myung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1289-1295
    • /
    • 2023
  • Polyurethane foam insulation required for storing and transporting cryogenic liquefied gas is already widely used as a thermal insulation material for commercial LNG carriers and onshore due to its stable price and high insulation performance. These polyurethane foams are reported to have different mechanical performance depending on the density, and the density parameter is determined depending on the amount of the blowing agent. In this study, density-dependent polyurethane foam was fabricated by adjusting the amount of blowing agent. The mechanical properties of polyurethane foam were analyzed in the room temperature and cryogenic temperature range of -163℃ at 1.5 mm/min, which is a quasi-static load range, and the cells were observed through microstructure analysis. The characteristics of linear elasticity, plateau, and densification, which are quasi-static mechanical behaviors of polyurethane foam, were shown, and the correlation between density and mechanical properties in a cryogenic environment was confirmed. The correlation between mechanical behavior and cell size was also analyzed through SEM morphology analysis. Polyurethane foam with a density of 180 kg/m3 had a density about twice as high as that of a polyurethane foam with a density of 96 kg/m3, but yield strength was about 51% higher and cell size was about 9.5% smaller.

Flow Characteristics in an Adiabatic Capillary Tube of Carbon Dioxide ($CO_2$ 단열 모세관내 유동 특성)

  • Roh, Geon-Sang;Son, Chang-Hyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.537-544
    • /
    • 2008
  • In this paper, flow characteristics of an adiabatic capillary tube in a transcritical $CO_2$ have been investigated employing the homogeneous model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factors(Churchill) and viscosity(McAdams) are comparatively used to investigate the flow characteristics. Supercritical and subcritical thermodynamic and transport properties of $CO_2$ are calculated employing EES property code. Flow characteristics analysis of $CO_2$ adiabatic capillary tube is presented to offer the basic design data for the operating parameters. The operating parameters considered in this study include inlet temperature and pressure of an adiabatic capillary tube, evaporating temperature and inner diameter tube. The main results were summarized as follows : inlet temperature and pressure of an adiabatic capillary tube, evaporating temperature, mass flowrate and inner diameter of $CO_2$ adiabatic capillary tube have an effect on length of an adiabatic capillary tube.

Development of Hydraulic Compressor for Hydrogen Station (수소스테이션용 유압 압축기 개발)

  • Cho, Sung-Min;Roh, Gyeong-gil;Yeom, Ji-woong;lee, Seung-kuk;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.158-163
    • /
    • 2018
  • Major producers have already built compressors since World War I and have been monopolizing all domestic and overseas markets based on the accumulated technology, and the dependency of the manufacturers over the entire industry is deepening. Therefore, it is expected that the technological gap with developed countries will be larger without development of the related technology. Therefore, it is necessary to develop a unique technology for a new type of high efficiency compression system. In this study, we present localization of Hydraulic Compressor which can meet the technical trends such as cost reduction, efficiency improvement, environmental friendliness, wide operating range, low capacity / high capacity compatibility, size reduction, easy operation and easy maintenance.

A Study on the Characteristic of Conversion Efficiency for Three-way Catalyst in Hydrogen-Natural Gas Blend Fueled Engine (수소-천연가스 혼합연료 엔진의 삼원촉매 전환효율 특성 연구)

  • Park, Cheol-Woong;Yi, Ui-Hyung;Kim, Chang-Gi;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.23-30
    • /
    • 2016
  • The conventional natural gas engine realized lean combustion for the improved efficiency. However, in order to cope with exhaust gas regulations enforced gradually, the interest has shifted at the stoichiometric mixture combustion system. The stoichiometric mixture combustion method has the advantage of a three-way catalyst utilization whose purification efficiency is high, but the problem of thermal durability and the fuel economy remains as a challenge. Hydrogen-natural gas blend fuel (HCNG) can increase the rate of exhaust gas recirculation (EGR) because the hydrogen increases burning speed and lean flammability limit. The increase in the EGR rate can have a positive impact on heat resistance of the engine due to the decreased combustion temperature, and further can increase the compression ratio for efficient combustion. In this study, to minimize the exhaust emission developed HCNG engine with stoichiometric combustion method, developed three-way catalyst was applied to evaluate the conversion characteristics. The tests were carried out during the steady state and transient operating conditions, and the results were compared for both the conventional and proto-three-way catalyst of HCNG engine for city buses.

Process Simulation of HCNG Refueling System (HCNG 충전 시스템 공정모사)

  • Kim, Sang-Min;Han, Jeong-Ok;Lee, Yeong-Cheol;Lee, Joong-Seong;Kim, Yong-Cheol;Chae, Jeong-Min;Hong, Seong-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.1-7
    • /
    • 2013
  • In this study, simulation work of HCNG refueling system was performed. The hydrogen was produced from steam reforming process by natural gas. The conversion of natural gas is increased as SCR is increased. but it was no significant difference more than 3 of SCR and fuel throughput is increased as GHSV is increased. Both conversion and fuel throughput levels was optimized when the $1700h^{-1}$ of GHSV. CNG was compressed from low pressure natural gas. For the mixing of $H_2$ and CNG is mixed with the high pressure conditions such as 400bar of $H_2$ and 250bar of natural gas. Single-stage compression was required more power than multi stage. So, multi stage compression was suggested for high pressure compression. We calculated the intermediate pressure to minimize total required power of compressors. The intermediate pressure for $H_2$ and natural gas were derived at 61 and 65 bar, respectively.

A Study of Simulation on the Refrigerated Warehouse System Based on the Cold Energy of Lng Using the Pro-Ii Simulator (LNG 냉열을 이용한 냉장·냉동 창고 모사에 관한 연구)

  • HAN, DANBEE;KIM, YOONJI;YEOM, KYUIN;SHIN, JAERIN;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.401-406
    • /
    • 2017
  • When Liquified Natural Gas (LNG) is vaporized into NG for industrial and household usage, tremendous cold energy was transferred from LNG to seawater during phase-changing process. This heat exchanger loop is not only a waste of huge cold energy, but will cause thermal pollution to the coastal fishery area also when cold water was re-injected into the sea. In this study, an innovation design has been performed to reclaim the cold energy for -35 to $62^{\circ}C$ refrigerated warehouse. Conventionally, this was done by installing mechanical refrigeration systems, necessitating tremendous electrical power to drive temperature. A closed loop LNG heat exchangers in series was designed to replace the mechanical or vapor-compression refrigeration cycle by process simulator. The process simulation software of PRO II with provision has been used to simulate this process for various conditions, what to effect on cold energy and used energy for re-liquefaction and evaporation process. In addition, through analysis the effect of the change of LNG supply pressure on sensible and latent heat, optimum operational conditions was suggested for LNG cold energy warehouse.

Effect of the Array Type of Heat Exchangers on Performance of Refrigerated Warehouse for Utilization of LNG Cold Energy (LNG 냉열활용을 위한 열교환기의 배열 형태가 냉동창고 성능에 미치는 연구)

  • HAN, DANBEE;KIM, YUNJI;BYUN, HYUNSEUNG;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.282-288
    • /
    • 2019
  • When liquefied natural gas (LNG) is vaporized to form natural gas for industrial and household consumption, a tremendous amount of cold energy is transferred from LNG to seawater as a part of the phase-change process. This heat exchange loop is not only a waste of cold energy, but causes thermal pollution to coastal fishery areas by dumping the cold energy into the sea. This project describes an innovative new design for reclaiming cold energy for use by cold storage warehouses (operating in the 35 to $62^{\circ}C$ range). Conventionally, warehouse cooling is done by mechanical refrigeration systems that consume large amounts of electricity for the maintenance of low temperatures. Here, a closed loop LNG heat exchange system was designed (by simulator) to replace mechanical or vapor-compression refrigeration systems. The software PRO II with PROVISION V9.4 was used to simulate LNG cold energy, gas re-liquefaction, and the vaporized process under various conditions. The effects on sensible and latent heats from changes to the array type of heat exchangers have been investigated, as well as an examination of the optimum.

A study on Production of Al Foam by Using of Al Return Scrap for Sound and Vibration Absorption Materials

  • Hur, Bo-Young;Kim, Sang-Youl;Park, Dae-Chol;Jeon, Sung-Hwan;Park, Chan-Ho;Yoon, Ik-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.198-201
    • /
    • 2001
  • Porous structures of aluminum foam have been studied by using return aluminum scrap. The apparent foam shape, foam height, density, pore size and their distributions in various section areas of the experimental samples have been investigated. The sample have been cast into metallic mold, using aluminum foam prepared from a precursor based on pure Al ingot and return aluminum scrap mixed with various amounts of 1-2wt% increasing viscosity and foam agent materials. The process provides for flexibility in design of foam structures via relatively easy control over the amount of hydrogen evolution and the drainage processes which occur during foam formation. This is facilitated by manipulating parameters such as the foaming agent, thermal histories during solidification and mix melt viscosities. A metal for producing the foamed are decomposing a foaming agent in a molten metal such that there is an initial and a subsequent expansion due to foaming agent. It has been found that the Al porous foaming with variation amount of 1∼2wt% foam agent and at 2min holding time, which melting temperature has appeared homogeneous pore size at 650∼700$^{\circ}C$. The compression strength were 10-13 kg/min at 125ppi, and increased by higher pore density. The acoustical performance of the panel made with the foamed aluminum is considerably improved; its absorption coefficient shows NRC 0.6-0.8. It has been found that the Al foam is very preferable for the compactness of the thermal system.

  • PDF