• Title/Summary/Keyword: Hydrogen center

Search Result 1,646, Processing Time 0.032 seconds

Crystal and Molecular Structure of Methyl 12-(3-bromophenyl)-9-[(4-methylbenzene)sulfonyl]-22-oxo-13,21-dioxa-9-azapentacyclo[12.8.0.02,11.03,8.015,20]docosa-1(14),3,5,7,15(20),16,18-heptaene-11-carboxylate

  • Kothandan, Gugan;Ganapathy, Jagadeesan;Damodharan, Kannan;Sanmargam, Aravindhan
    • Journal of Integrative Natural Science
    • /
    • v.7 no.2
    • /
    • pp.92-102
    • /
    • 2014
  • The crystal structure of the title compounds with both coumarin and sulfonamide moieties were examined. These two groups have very special for their pharmaceutical and medicinal properties have been determined from single crystal X-ray diffraction data. In the title compound crystallizes in the monoclinic space group C2/c with unit cell dimension a = 28.633(3) ${\AA}$, b= 9.3215(7) ${\AA}$ and c= 24.590(2) ${\AA}$ [alpha & gamma=$90^{\circ}$ beta= $115.976(3)^{\circ}$]. In the structure The S1 atom shows a distorted tetrahedral geometry, with O1-S1-O2 [119.74 $(2)^{\circ}$] and N1-S1-C5 [$105.57(1)^{\circ}$] angles deviating from ideal tetrahedral values are attributed to the Thrope-Ingold effect. The sum of bond angles around N1 ($316.2(1)^{\circ}$) indicates that N1 is in sp2 hybridization. The Pyridine ring adopts boat conformation and pyran rings adopt a sofa conformation. The carboxylate group of atoms were disordered over two positions with site occupancy factors 0.598 (9):0.402 (9). Crystal structure and packing is stabilized by $C-H{\ldots}O$ intra and inter molecular hydrogen bond interactions.

Effects of Fermented Leachate of Food Waste (FLFW) and Temperature on Nutrient Removal in Sequencing Batch Reactor

  • Roh, Sung-Hee;Chun, Young-Nam;Lee, Sook-Young;Cheong, Hyeon-Sook;Lee, Jae-Wook;Kim, Sun-Il
    • Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.155-161
    • /
    • 2008
  • This study examined effects of the fermented leachate of food waste (FLFW) on nitrogen and phosphorous removal for domestic wastewater containing a low carbon-to-nitrogen (C/N) ratio in sequencing batch reactor (SBR). When the FLFW was not supplied in the process, release of phosphorus and excessive intake was not observed at both anaerobic and aerobic stages. On the other hand, when the FLFW was gradually added, active release of phosphorus and intake of phosphorus was noticed at an anaerobic stage and aerobic stage, respectively, resulting in improved phosphorus removal efficiency. The removal efficiency of nitrogen and phosphorus was increased from 75% and 37% (R-1, control test) to 97% and 80% (R-4, the highest substrate ratio test), respectively. In addition, although activity of the nitrogen oxidizing microorganisms was reduced when the reaction temperature was decreased to $10^{\circ}C$, the phosphorus removal efficiency was shown to increase with the addition of FLFW, indicating an independence from temperature. Overall, this study suggests that an efficient nutrients removal process can be successfully employed into a SBR when the FLFW is added to a wastewater which has a low C/N ratio.

Antioxidant Property of Genistein: Inhibitory Effect on HOCI Induced Protein Degradation, DNA Cleavage, and Cell Death

  • Choi, Je-Min;Ryu, Hyun-Jin;Chung, Jae-Hwan;Park, Jae-Chul;Hwang, Jae-Kwan;Shin, Dong-Bum;Lee, Sang-Kyou;Ryang, Ryung
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.399-404
    • /
    • 2005
  • The aim of this study was to investigate the in vitro antioxidant profiles of genistein and other isoflavonoids. The reactivity of genistein towards stable radical and reactive oxygen species including ${\bullet}\;ABTS^+$, ${\bullet}{O_2}^-$, $H_2O_2$ and HOCl has been investigated, and the effects were compared with other isoflavonoids and antioxidants. All the tested isoflavonoids showed remarkable ${\bullet}\;ABTS^+$ scavenging activity and genistein was more potent than BHT and ascorbic acid. Genistein was more effective in scavenging hypochlorous acid than superoxide and hydrogen peroxide. At $10\;{\mu}M$ concentrations of genistein and genistin showed about 90% inhibitory effect on HOCl, while BHT and ascorbic acid showed lower than 50% inhibitory effect. Moreover, genistein could inhibit plasmid DNA cleavage, protein degradation and cell death from HOCl attack, while daidzein, BHT and ascorbic acid could not protect them effectively. These results suggest that genistein is a more potent radical scavenger than other isoflavonoids, and it can remarkably reduce cellular damage induced by HOCl.

NOx Conversion of Mn-Cu Catalyst at the Low Temperature Condition (저온에서 Mn-Cu 촉매의 NOx 전환특성)

  • Park, Kwang-Hee;You, Seung-Han;Park, Young-Ok;Kim, Sang-Wung;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4250-4256
    • /
    • 2011
  • Mn catalyst promoted with Cu were prepared and tested for selective catalytic reduction of $NO_x$ with $NH_3$. Performance of each catalyst was investigated for $NO_x$ activity while changing temperature, space velocity, water content and $O_2$ concentration. Hydrogen conversion efficiency of catalyst was also measured in the $H_2$-TPR system. The inhibition effect of water on catalyst was investigated with the on-off control of water supply. High activity of Mn-Cu catalyst was observed for $160{\sim}260^{\circ}C$. It is found that increase of oxygen concentration acts as a promotor to the increase of catalyst activity but water content acts as a inhibitor.

Crystal Structure of a Benzene Sorption Complex of Dehydrated Fully $Cd^{2+}$-Exchanged Zeolite X

  • 김양;염영훈;최은영;김안나;한영욱
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1222-1227
    • /
    • 1998
  • The crystal structure of a benzene sorption complex of fully dehydrated Cd2+-exchanged zeolite X, Cd46Si100Al92O384·43C6H6 (a=24.880(6) Å), has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at 21 ℃. The crystal was prepared by ion exchange in a flowing stream of 0.05 M aqueous Cd(NO3)2 for 3 d, followed by dehydration at 400 ℃ and 2 x 10-6 Torr for 2 d, followed by exposure to about 92 Torr of benzene vapor at 22 ℃. The structure was determined in this atmosphere and refined to the final error indices R1=0.054 and Rw=0.066 with 561 reflections for which I > 3σ(I). In this structure, Cd2+ ions are found at four crystallographic sites: eleven Cd2+ ions are at site 1, at the centers of the double six-oxygen rings; six Cd2+ ions lie at site I', in the sodalite cavity opposite to the double six-oxygen rings; and the remaining 29 Cd2+ ions are found at two nonequivalent threefold axes of unit cell, sites Ⅱ' (in the sodalite cavity ) and site Ⅱ (in the supercage) with occupancies of 2 and 27 ions, respectively. Each of these Cd2+ ions coordinates to three framework oxylkens, either at 2.173(13) or 2.224(10) Å, respectively, and extends 0.37 Å into the sodalite unit or 0.60 Å into the supercage from the plane of the three oxygens to which it is bound. The benzene molecules are found at two distinct sites within the supercages. Twenty-seven benzenes lie on threefold axes in the large cavities where they interact facially with the latter 27 site-Ⅱ Cd2+ ions (Cd2+-benzene center=2.72 Å; occupancy=27 molecules/32 sites). The remaining sixteen benzene molecules are found in 12ring planes; occupancy=16 molecules/16 sites. Each hydrogen of these sixteen benzenes is ca. 2.8/3.0 Å from three 12-ring oxygens where each is stabilized by multiple weak electrostatic and van der Waals interactions with framework oxygens.

Color Change of Esthetic Restorative Materials for Different Staining and Whitening Dentifrices

  • Choi, EunJung;Jang, HyeonSoo;Seo, YeLim;Kim, YoungJu;Lee, GaYoung;Kim, YouLim;Hwang, Soo-Jeong
    • Journal of dental hygiene science
    • /
    • v.21 no.3
    • /
    • pp.178-184
    • /
    • 2021
  • Background: As the importance of the esthetic function of teeth increases, the use of esthetic restoration materials and whitening treatment are increasing. The purpose of this study was to investigate the color change of esthetic restoration materials upon using staining and whitening toothpaste. Methods: Light curing (LC) packable composite resin, LC flowable resin, LC glass ionomer (GI), and self-curing GI specimens were colored in coffee or curry for three hours a day for seven days. After that, regular toothpaste, whitening toothpaste containing hydrogen peroxide, and whitening toothpaste containing activated charcoal were applied for three minutes three times a day for two weeks. Luminosity (L), chromaticity a (a), and chromaticity b (b) were measured using a spectrophotometer once a week. Results: In the coffee-colored group, the change in L2*a2*b2 (E2) with time was significant (p=0.004), there was no difference for different toothpaste types (p=0.646), and there was significant difference (p<0.001) for different esthetic restorative materials. The change of E2 in the curry-colored group was significant only for different esthetic restorative materials (p<0.001). In the coffee-colored group, the L, a, and b values of the light-curing GI showed greater change than other materials after staining and one week after whitening, turning dark, red, and yellow. In the curry-colored group, L did not differ for different materials and times, and a and b showed the greatest difference in light-curing GI after staining and one and two weeks after whitening. Conclusion: The use of whitening toothpaste for two weeks was not different from the use of general toothpaste in the removal of staining or whitening. Since light-curing GI is the most vulnerable to coloration, it is recommended that coloring by food chromogen should be explained in advance, before using light-curing GI for teeth restoration.

A Study on the Pressure Control Process of Gas Regulators through Numerical Analysis (수치해석을 통한 가스 레귤레이터의 압력제어 프로세스 고찰)

  • Jung, Jun-Hwan;Nam, Chung-Woo;Kim, Min-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.37-51
    • /
    • 2021
  • The pressure drop phenomenon that occurs when the same flow rate is supplied to the gas regulator was analyzed. The regulator moves the position of the piston through the interaction of the force acting on the upper and lower parts of the piston and the spring tension to release the pressure of a specific range in a specific environment as constant pressure, thereby maintaining the pressure. The flow characteristics and pressure control process of the regulator were investigated through a numerical analysis technique as the volume of the fluid inside the regulator changed. As the gap between the piston and the piston seat decreased, the pressure drop increased and the flow velocity increased. It was verified through numerical analysis that the piston was positioned at 0.12mm under the same conditions as the pressure-flow test (inlet pressure 3MPa, outlet pressure 0.8MPa, flow rate 70kg/h).

Inactivation of Mycobacteria by Radicals from Non-Thermal Plasma Jet

  • Lee, Chaebok;Subhadra, Bindu;Choi, Hei-Gwon;Suh, Hyun-Woo;Uhm, Han. S;Kim, Hwa-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1401-1411
    • /
    • 2019
  • Mycobacterial cell walls comprise thick and diverse lipids and glycolipids that act as a permeability barrier to antibiotics or other chemical agents. The use of OH radicals from a non-thermal plasma jet (NTPJ) for the inactivation of mycobacteria in aqueous solution was adopted as a novel approach. Addition of water vapor in a nitrogen plasma jet generated OH radicals, which converted to hydrogen peroxide ($H_2O_2$) that inactivated non-pathogenic Mycobacterium smegmatis and pathogenic Mycobacterium tuberculosis H37Rv. A stable plasma plume was obtained from a nitrogen plasma jet with 1.91 W of power, killing Escherichia coli and mycobacteria effectively, whereas addition of catalase decreased the effects of the former. Mycobacteria were more resistant than E. coli to NTPJ treatment. Plasma treatment enhanced intracellular ROS production and upregulation of genes related to ROS stress responses (thiolrelated oxidoreductases, such as SseA and DoxX, and ferric uptake regulator furA). Morphological changes of M. smegmatis and M. tuberculosis H37Rv were observed after 5 min treatment with $N_2+H_2O$ plasma, but not of pre-incubated sample with catalase. This finding indicates that the bactericidal efficacy of NTPJ is related to the toxicity of OH and $H_2O_2$ radicals in cells. Therefore, our study suggests that NTPJ treatment may effectively control pulmonary infections caused by M. tuberculosis and nontuberculous mycobacteria (NTM) such as M. avium or M. abscessus in water.

Crystal Structure of a Highly Thermostable α-Carbonic Anhydrase from Persephonella marina EX-H1

  • Kim, Subin;Sung, Jongmin;Yeon, Jungyoon;Choi, Seung Hun;Jin, Mi Sun
    • Molecules and Cells
    • /
    • v.42 no.6
    • /
    • pp.460-469
    • /
    • 2019
  • Bacterial ${\alpha}-type$ carbonic anhydrase (${\alpha}-CA$) is a zinc metalloenzyme that catalyzes the reversible and extremely rapid interconversion of carbon dioxide to bicarbonate. In this study, we report the first crystal structure of a hyperthermostable ${\alpha}-CA$ from Persephonella marina EX-H1 (pmCA) in the absence and presence of competitive inhibitor, acetazolamide. The structure reveals a compactly folded pmCA homodimer in which each monomer consists of a 10-stranded ${\beta}-sheet$ in the center. The catalytic zinc ion is coordinated by three highly conserved histidine residues with an exchangeable fourth ligand (a water molecule, a bicarbonate anion, or the sulfonamide group of acetazolamide). Together with an intramolecular disulfide bond, extensive interfacial networks of hydrogen bonds, ionic and hydrophobic interactions stabilize the dimeric structure and are likely responsible for the high thermal stability. We also identified novel binding sites for calcium ions at the crystallographic interface, which serve as molecular glue linking negatively charged and otherwise repulsive surfaces. Furthermore, this large negatively charged patch appears to further increase the thermostability at alkaline pH range via favorable charge-charge interactions between pmCA and solvent molecules. These findings may assist development of novel ${\alpha}-CAs$ with improved thermal and/or alkaline stability for applications such as $CO_2$ capture and sequestration.

Anthocyanins from Hibiscus syriacus L. Inhibit Oxidative Stress-mediated Apoptosis by Activating the Nrf2/HO-1 Signaling Pathway

  • Molagoda, Ilandarage Menu Neelaka;Karunarathne, Wisurumuni Arachchilage Hasitha Maduranga;Lee, Kyoung Tae;Choi, Yung Hyun;Jayasooriya, Rajapaksha Gedara Prasad Tharanga;Kim, Gi-Young
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.91-91
    • /
    • 2019
  • Hibiscus syriacus L. is widely distributed throughout Eastern and Southern Asia and its root bark has been used as a traditional remedy. Recently, the extracts of H. syriacus L. exerts anti-cancerous, anti-microbial, and anti-inflammatory activities. However, the effect of anthocyanin-rich fraction of H. syriacus L. petals (PS) has not been studied under excessive oxidative stress. In this study, we evaluated the cellular protective effect of PS in HaCaT human skin keratinocytes under hydrogen peroxide ($H_2O_2$)-induced oxidative stress conditions. PS at below $400{\mu}g/ml$ did not show any cell death; however, over $800{\mu}g/ml$ of PS gradually increased cell death. PS at below $400{\mu}g/ml$ significantly inhibited $H_2O_2$-induced apoptosis in HaCaT cells concomitant with downregulation of Bax and upregulation of pro-PARP and p-Bcl-2. Additionally, PS remarkably reversed $H_2O_2$-induced excessive reactive oxygen species (ROS) production and apoptosis, and also significantly inhibited mitochondrial ROS production concomitant with suppression of $H_2O_2$-induced mitochondrial depolarization. $H_2O_2$-mediated ratio of Bax to Bcl-2, and caspase-3 activation were markedly abolished in the presence of PS. Moreover, the inhibition of HO-1 function using zinc protoporphyrin, an HO-1 inhibitor, significantly attenuated the cellular protective effects of PS against $H_2O_2$, indicating the significance of HO-1 in PS mediated cytoprotective effect, which was mediated by activating nuclear factor erythroid 2-related factor-2 (Nrf2). Taken together, our results suggest that cytoprotective effect of PS in HaCaT keratinocytes against oxidative stress-induced apoptosis is mediated by inhibiting cellular and mitochondrial ROS production, which is downregulated by activating Nrf2/HO-1 axis.

  • PDF