• Title/Summary/Keyword: Hydrogen analysis

Search Result 2,443, Processing Time 0.034 seconds

Neuroprotective effects of phenolic compounds isolated from Spiraea prunifolia var. simpliciflora (조팝나무(Spiraea prunifolia var. simpliciflora)로부터 분리한 페놀 화합물의 신경세포 보호효과)

  • Oh, Seon Min;Choi, Doo Jin;Kim, Hyoung-Geun;Lee, Jae Won;Lee, Young-Seob;Lee, Jeong-Hoon;Lee, Seung-Eun;Kim, Geum-Soog;Baek, Nam-In;Lee, Dae Young
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.397-403
    • /
    • 2018
  • The leaves of Spiraea prunifolia were extracted with 80% aqueous MeOH and the concentrates were partitioned into EtOAc, n-BuOH, and $H_2O$ fractions. The repeated $SiO_2$ or ODS column, and medium pressure liquid chromatographies for the n-BuOH fraction led to isolation of two phenolic glucosides. The chemical structures of these compounds were determined as isosalicin (1) and crenatin (2) based on spectroscopic analyses including Nuclear magnetic resonance and MS. Extracts were analyzed using UPLC-MS/MS providing a short analysis time within 5 min using MRM technique. The concentration of crenatin was higher as 9.53 mg/g and isosalicin was lower as 0.65 mg/g. Neuroprotective effects of these compounds against hydrogen peroxide ($H_2O_2$)-induced neurotoxicity were evaluated. The results showed that exposure to $H_2O_2$ induced morphological changes, cell death and neurotoxicity in SK-N-MC cells. However, pretreatment with crenatin resulted in inhibition of morphological change, reduction of loss of cell viability and attenuation of neuronal damage. These results suggested that neuroprotective effect of crenatin isolated from S. prunifolia can be a good candidate for the development of health beneficial foods which can ameliorate the degenerative neuronal disease caused by oxidative stress.

Nanolayered CuWO4 Decoration on Fluorine-Doped SnO2 Inverse Opals for Solar Water Oxidation

  • Cho, Ha Eun;Yun, Gun;Arunachalam, Maheswari;Ahn, Kwang-Soon;Kim, Chung Soo;Lim, Dong-Ha;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.282-291
    • /
    • 2018
  • The pristine fluorine-doped $SnO_2$ (abbreviated as FTO) inverse opal (IO) was developed using a 410 nm polystyrene bead template. The nanolayered copper tungsten oxide ($CuWO_4$) was decorated on the FTO IO film using a facile electrochemical deposition, subsequently followed by annealing at $500^{\circ}C$ for 90 min. The morphologies, crystalline structure, optical properties and photoelectrochemical characteristics of the FTO and $CuWO_4$-decorated FTO (briefly denoted as $FTO/CuWO_4$) IO film were investigated by field emission scanning electron microscopy, X-ray diffraction, UV-vis spectroscopy and electrochemical impedance spectroscopy, showing FTO IO in the hexagonally closed-pack arrangement with a pore diameter and wall thickness of about 300 nm and 20 nm, respectively. Above this film, the $CuWO_4$ was electrodeposited by controlling the cycling number in cyclic voltammetry, suggesting that the $CuWO_4$ formed during 4 cycles (abbreviated as $CuWO_4$(4 cycles)) on FTO IO film exhibited partial distribution of $CuWO_4$ nanoparticles. Additional distribution of $CuWO_4$ nanoparticles was observed in the case of $FTO/CuWO_4$(8 cycles) IO film. The $CuWO_4$ layer exhibits triclinic structure with an indirect band gap of approximately 2.5 eV and shows the enhanced visible light absorption. The photoelectrochemical (PEC) behavior was evaluated in the 0.5 M $Na_2SO_4$ solution under solar illumination, suggesting that the $FTO/CuWO_4$(4 cycles) IO films exhibit a photocurrent density ($J_{sc}$) of $0.42mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE, denoted as $V_{RHE}$), while the FTO IO and $FTO/CuWO_4$(8 cycles) IO films exhibited a $J_{sc}$ of 0.14 and $0.24mA/cm^2$ at $1.23V_{RHE}$, respectively. This difference can be explained by the increased visible light absorption by the $CuWO_4$ layer and the favorable charge separation/transfer event in the cascading band alignment between FTO and $CuWO_4$ layer, enhancing the overall PEC performance.

A Possible Protective Role of Ginko biloba Outer Seed Coat Methanol Extracts on DNA Damage Induced by H2O2 in HaCaT Human Skin Keratinocytes (HaCaT 인간 피부 케라티노사이트에서 과산화수소 유발 DNA 손상에 대한 은행외종피 추출물의 보호효과)

  • Sim, Jae Young;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1164-1170
    • /
    • 2019
  • The present study was carried out to evaluate extracts of Ginko biloba's outer seed coat, their antioxidative effects, and their ability to protect against DNA damage due to hydrogen peroxide ($H_2O_2$) treatments in cultured human keratinocyte (HaCaT) cells. The bioassays applied for determining the antioxidant effects of a G. biloba outer seed coat water extract (GOSWE) and a G. biloba outer seed coat methanol extract (GOSME) included the DPPH and $H_2O_2$ radical scavenging assays. Our results revealed that GOSME had higher activity than GOSWE against $H_2O_2$ radical scavenging activity in in vitro and in vivo bioassays. Treatment with GOSME significantly increased the viability of $H_2O_2-treated$ HaCaT cells. GOSME's ability to protect against DNA damage was observed via the analysis of plasmids in vitro and genomic DNA in $H_2O_2-treated$ HaCaT cells. According to our data, GOSME is able to protect HaCaT cells from $H_2O_2-induced$ DNA damage and apoptosis by blocking cellular damage related to oxidative stress. In conclusion, our study indicated GOSME might serve as a novel agent for the treatment and prevention of skin disorders caused by oxidative stress.

Analysis of Dry Process Products for Recycling of Spent Secondary Batteries (폐 이차전지 리사이클링을 위한 건식공정 생성물 분석)

  • Kim, Jinhan;Kim, Yongcheol;Oh, Seung Kyo;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.139-145
    • /
    • 2021
  • The purpose of this study is to recover valuable metals from spent batteries using a dry process. We focused on the effect of the smelting temperature on the composition of recovered solid and liquid products and collected gaseous products. After removal of the cover, the spent battery was left in NaCl solution and discharged. Then, the spent battery was made into a powder form through a crushing process. The smelting of the spent battery was performed in a tubular electric furnace in an oxygen atmosphere. For spent lithium-ion batteries, the recovery yield of the solid product was 80.1 wt% at a reaction temperature of 850 ℃, and the final product had 27.2 wt% of cobalt as well as other metals such as lithium, copper, and aluminum. Spent nickel-hydrogen batteries had a recovery yield of 99.2 wt% at a reaction temperature of 850 ℃ with about 37.6 wt% of nickel and other metals including iron. For spent nickel-cadmium batteries, the yield decreased to 65.4 wt% because of evaporation with increasing temperature. At 1050 ℃, the recovered metals were nickel (41 wt%) and cadmium (12.9 wt%). Benzene and toluene, which were not detected with the other secondary waste batteries, were detected in the gaseous product. The results of this study can be used as basic data for future research on the dry recycling process of spent secondary batteries.

Effects of Jinyeosoo Clean Mist on the Improvement of Facial Skin in Middle-aged Women (진여클린미스트를 이용한 중년여성의 안면피부개선 효과)

  • Kim, Min Joo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.220-228
    • /
    • 2021
  • In this study, 20 middle-aged women aged from 35 to 55 were studied from October 12, 2020 to November 15, 2020 to find out the effects of improvement of facial skin of Jinyeosoo Clean Mist. Among the 20 participants, 10 were divided into experimental group and 10 control group. The Janus facial skin scope system (PSI Co.) used on the skin to measure pore, wrinkles, elasticity, UV pigmentation, and skin tone observed depending the difference in light sources. The facial examination took place 10 minutes after cleansing to stabilize and a total of 4 examinations were carried out after every week of using Jinyeosoo Clean Mist for 4 weeks. For statistical processing, SPSS statistics program 21.0 was utilized to compare the mean averages of pre-experimental and post-experimental data from the above two groups - the experimental group that used Jinyeosoo Clean Mist (hydrogen ion mist) 1 and 2 and the control group that did not use the subject products - and the corresponding sample t-test was used. As a result of the analysis, the group that used Jinyeosoo Clean Mist showed difference in pores (t=3.280, p<.05), wrinkles (t=4.353, p<.01) and elasticity (t=3.003, p<.05), skin tone(t=3.280, p<.01) under the statistical significance level.

Preparation and Characterization of Polyvinylidene Fluoride by Irradiating Electron Beam (전자빔 조사를 이용한 Polyvinylidene Fluoride의 제조 및 특성)

  • Choi, Yong-Jin;Kim, Min
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.353-357
    • /
    • 2011
  • For the purpose of introducing hydrophilic function to pristine PVDF, pristine PVDF was modified under atmosphere and aqueous vapor by irradiating electron beam (EB). EB dose was varied from 0 to 125 K Gray, respectively. Their changes of chemical composition /structure were observed and evaluated by FT-IR, EDS and DSC. Also, their surface behaviors were evaluated by contact angle. In FT-IR study, it was confirmed that hydroxyl functions were introduced to pristine PVDF. In EDS analysis, mole ratio of F (fluoride) was almost constant (about 33%) in spite of increasing EB dose, meaning that hydroxyl function was introduced via dehydrozenation, not via deflurodination. In DSC study, $T_g$ increased with increasing EB dose, which was reconfirmed that hydroxyl function was introduced via dehydrozenation. $T_m$ increased with increasing EB dose, inferring that the increase in EB dose led to more outbreak of hydroxyl function which led to more enhanced hydrogen bond. In the result of contact angle, pristine PVDF film was $62^{\circ}$ and 125 K Gray-irradiated PVDF film was even $13^{\circ}$. All results showed that pristine PVDF was successfully changed to hydrophilic PVDF.

A Study on the possibility of using wood pellets of rice husk through the addition combusion improver and development of expansion technology (연소촉진제 첨가 및 팽연화 기술 개발을 통한 왕겨의 목재펠릿 사용 가능성 연구)

  • Kim, Wanbae;Oh, Doh Gun;Ryu, Jae Sang;Jung, Yeon-Hoon;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1678-1686
    • /
    • 2020
  • This study attempted to derive the possibility of using wood pellet using rice husk, which is an agricultural byproduct, and tried to improve the lower calorific value of rice hulls thorough expansion technology and combustion additives. In the physical and chemical analysis of rice husk, the result was obtained that the chlorine content was 0.09%, which did not meet the wood pellet quality standard of Korea. When making rice hulls into expanded rice husk through the expansion technology, the chlorine content decreased, resulting in a product of 0.02%, which is equivalent to the wood pellet standard of Korea, and the calorific value was also increased to 4,280 kcal/kg compared to the existing 3,780 kcal/kg. To obtain a product of 5,000 kcal/kg or more, borax, hydrogen peroxide, and sodium hydroxide was used as combustion improver. However the improvement in calorific value was insufficient. After conversion to coffee oil path using coffee grounds, which is a waste resource biomass, it is mixed into an expanded rice husk, and when the product is analyzed, the coffee oil 15 wt% mixed product shows an excess of 4,949 kcal/kg. When using rice husk, an agricultural byproduct, as wood pellets, it is considered desirable to use waste resources to improve the calorific value, and according to the results of this study, when mixing coffee oil, rice husk can be sufficiently used as wooden pellets.

A Study on Structural Analysis for Improving Driving Performance of Agricultural Electric Car (농업용 전기운반차의 주행성능 향상을 위한 구조해석에 관한 연구)

  • Jo, Jae-Hyun;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.556-561
    • /
    • 2020
  • The aging and declining agricultural population in the modern society requires improvement of the agricultural environment and is one of the representative problems. And since most of the work systems always require a transport work, the ratio of labor consumed in the transport work is very high. Accordingly, many types of transport vehicles are being developed and sold, and in the early days, most of them are powered transport vehicles using fossil fuels. However, it is paying attention to next-generation eco-friendly energy such as hydrogen, fuel cells, solar power, and bio due to the strengthening of international environmental regulations such as global warming and the Convention on Climate Change and the depletion of fossil fuels. Therefore, in this study, the ultimate goal is to develop an eco-friendly, easy-to-operate, safe agricultural electric vehicle that replaces fossil fuels. It was designed with a focus on controlling a wide range of vehicle speeds and securing stability of electric agricultural vehicles. Considering the performance and design, it is composed of a frame, a driving part, a steering part, and a controller system, and we are going to review and manufacture each part. It is believed that the manufactured electric vehicle for agriculture can be easily and conveniently operated in an agricultural society where young manpower is scarce, and can be helpful to the agricultural society through high efficiency.

Effects of taurine and ginseng extracts on energy metabolism during exercise and their anti-fatigue properties in mice

  • Kim, Jisu;Beak, Suji;Ahn, Sanghyun;Moon, Byung Seok;Kim, Bom Sahn;Lee, Sang Ju;Oh, Seung Jun;Park, Hun-Young;Kwon, Seung Hae;Shin, Chul Ho;Lim, Kiwon;Lee, Kang Pa
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.33-45
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Ginseng extract (GSE) and taurine (TR) are widely used antifatigue resources in functional foods. However, the mechanism underlying the antifatigue effects of GSE and TR are still unclear. Hence, we investigated whether GSE and TR have synergistic effects against fatigue in mice. MATERIALS/METHODS: L6 cells were treated with different concentrations of TR and GSE, and cell viability was determined using 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium. Oxidative stress was analyzed by immunocytochemistry using MitoTrackerTM Red FM and an anti-8-oxoguanine antibody. Respiratory gas analysis was performed to investigate metabolism. Expression of an activated protein kinase was analyzed using immunohistochemistry. Gene expression of cluster of differentiation 36 and pyruvate dehydrogenase lipoamide kinase isozyme 4 was measured using reverse transcription-polymerase chain reaction. Mice were orally administered TR, GSE, or their combination for 30 days, and then fatigue-related parameters, including lactate, blood urea nitrogen, and glycogen, were measured after forced swimming. RESULTS: TR and GSE reduced oxidative stress levels in hydrogen peroxide-stimulated L6 cells and enhanced the oxygen uptake and lipid metabolism in mice after acute exercise. After oral administration of TR or GSE for 30 days, the fatigue-related parameters did not change in mice. However, the mice administered GSE (400 mg/kg/day) alone for 30 days could swim longer than those from the other groups. Further, no synergistic effect was observed after the swimming exercise in mice treated with the TR and GSE combination for 30 days. CONCLUSIONS: Taken together, our data suggest that TR and GSE may exert antifatigue effects in mice after acute exercise by enhancing oxygen uptake and lipid oxidation.

Proposal of a Pilot Plant (2T/day) for Solid Fuel Conversion of Cambodian Mango Waste Using Hybrid Hydrothermal Carbonization Technology (하이브리드 수열탄화기술을 이용한 캄보디아 망고 폐기물 고형연료화 실증플랜트 (2T/day) 제안)

  • Han, Jong-il;Lee, Kangsoo;Kang, Inkook
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.59-71
    • /
    • 2021
  • Hybrid hydrothermal carbonization (Hybrid HTC) technology is a proprietary thermochemical process for two or more organic wastes.The reaction time is less than two hours with temperature range 180~250℃ and pressure range 20~40bar. Thanks to accumulation of the carbon of the waste during Hybrid HTC process, the energy value of the solid fuel increases significantly with comparatively low energy consumption. It has also a great volume reduction with odor removal effect so that it is evaluated as the best solid fuel conversion technology for various organic wastes. In this study of the hybrid hydrothermal carbonization, the effect on the calorific value and yield of Cambodian mango waste were evaluated according to changes in temperature and reaction time. Through the study, parameter optimization has been sought with improving energy efficiency of the whole plant. It is decomposed in the Hydro-Carbonation Technology to Generate Gas. At this time, it is possible to develop manufacturing and production technologies such as hydrogen (H2) and methane (CH4). Based on the results of the study, a pilot plant (2t/day) has been proposed for future commercialization purpose along cost analysis, mass balance and energy balance calculations.