• Title/Summary/Keyword: Hydrogen analysis

Search Result 2,462, Processing Time 0.031 seconds

Lattice Deformation and Improvement Oxidation Resistance of Ti-6Al-4V Alloy Powders Prepared by Hydrogen Added Argon Heat Treatment (수소 첨가 열처리에 따른 Ti-6Al-4V 합금 분말의 격자 변형 및 내산화성 향상)

  • Cho, Gye-Hoon;Oh, Jung-Min;Lim, Jae-Won
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.126-131
    • /
    • 2019
  • In the present work, a new hydrogen added argon heat treatment process that prevents the formation of hydrides and eliminates the dehydrogenation step, is developed. Dissolved hydrogen has a good effect on sintering properties such as oxidation resistance and density of greens. This process can also reduce costs and processing time. In the experiment, commercially available Ti-6Al-4V powders are used. The powders are annealed using tube furnace in an argon atmosphere at $700^{\circ}C$ and $900^{\circ}C$ for 120 min. Hydrogen was injected temporarily during argon annealing to dissolve hydrogen, and a dehydrogenation process was performed simultaneously under an argon-only atmosphere. Without hydride formation, hydrogen was dissolved in the Ti-6Al-4V powder by X-ray diffraction and gas analysis. Hydrogen is first solubilized on the beta phase and expanded the beta phases' cell volume. TGA analysis was carried out to evaluate the oxidation resistance, and it is confirmed that hydrogen-dissolved Ti-6Al-4V powders improves oxidation resistance more than raw materials.

Numerical Analysis of Fillling Flow in Type III Hydrogen Tank with Different Turbulence Models (Type III 수소 저장 용기에서 난류 모델(Turbulence Model)에 따른 충전(Filling)현상의 수치 해석적 연구)

  • KIM, MOO-SUN;RYU, JOON-HYOUNG;LEE, SUNG-KWON;CHOI, SUNG-WOONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.483-488
    • /
    • 2021
  • With continuous emission of environmental pollutants and an increase in greenhouse gases such as carbon dioxide, demand to seek other types of energy sources, alternative energy, was needed. Hydrogen, an eco-friendly energy, is attracting attention as the ultimate alternative energy medium. Hydrogen storage technology has been studied diversely to utilize hydrogen energy. In this study, the gas behavior of hydrogen in the storage tank was numerically examined under charge conditions for the Tpe III hydrogen tank. Numerical results were compared with the experimental results to verify the numerical implementation. In the results of pressure and temperature values under charge condition, the Realizable k-ε model and Reynold stress model were quantitatively matched with the smallest error between numerical and experimental results.

Economic and Environmental Impact Analyses on Supply Chains for Importing Clean Hydrogen from Australia in the Republic of Korea (한국의 호주 청정 수소 수입을 위한 공급망의 경제성 및 환경영향 평가)

  • AYEON, KIM;CHANGGWON, CHOE;SEUNGHYUN, CHEON;HANKWON, LIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.623-635
    • /
    • 2022
  • As global warming accelerates, clean hydrogen production becomes more important to mitigate it. However, importing hydrogen is necessary for countries that have high energy demands but insufficient resources to produce clean hydrogen. In line with the trend, this study investigated both the economic and environmental viability of an overseas hydrogen supply chain between Australia and the Republic of Korea. Several possible methods of water electrolysis and hydrogen carriers are compared and effect of renewable electricity price on the cost of hydrogen production is evaluated.

Techno-Economic Analysis of Green Hydrogen Production System Based on Renewable Energy Sources (재생에너지 기반 그린 수소 생산 시스템의 기술 경제성 분석)

  • PARK, JOUNGHO;KIM, CHANG-HEE;CHO, HYUN-SEOK;KIM, SANG-KYUNG;CHO, WON-CHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.337-344
    • /
    • 2020
  • Worldwide, there is a significant surge in the efforts for addressing the issue of global warming; the use of renewable energy is one of the solutions proposed to mitigate global warming. However, severe volatility is a critical disadvantage, and thus, power-to-gas technology is considered one of best solutions for energy storage. Hydrogen is a popular candidate from the perspective of both environment and economics. Accordingly, a hydrogen production system based on renewable energy sources is developed, and the economics of the system are assessed. The result of the base case shows that the unit cost of hydrogen production would be 6,415 won/kg H2, with a hydrogen production plant based on a 100 MW akaline electrolyzer and 25% operation rate, considering renewable energy sources with no electricity cost payment. Sensitivity study results show that the range of hydrogen unit cost efficiency can be 2,293 to 6,984 Won/kg H2, depending on the efficiency and unit cost of the electrolyzer. In case of electrolyzer operation rate and electricity unit cost, sensitivity study results show that hydrogen unit cost is in the range 934-26,180 won/kg H2.

Multiscale Stress Analysis of Palladium/Carbon Fiber Composites for the Hydrogen High Pressure Vessel (수소고압저장용기용 팔라듐 첨가 탄소섬유복합재에 대한 멀티스케일 응력해석)

  • Park, Woo Rim;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • The multi-scale analysis is more proper and precise for composite materials because of considering the individual microscopic structure and properties of each material for composite materials. The purpose of this study is to verify the validity of using palladium particles in carbon/fiber composites by multi-scale analysis. The palladium is a material for itself to detect leaking hydrogen by using the property of adsorbing hydrogen. The macroscopic model material properties used in this study are homogeneous material properties from microstructure. Homogenized material properties that are calculated from periodic boundary conditions in the microscopic representative volume element model of each macroscopic analysis model. In this study, three macroscopic models were used : carbon fiber/epoxy, carbon fiber/palladium, palladium/epoxy. As a result, adding palladium to carbon/epoxy composite is not a problem in terms of strength.

Numerical Analysis of Palladium added Carbon Fiber/Al using Extended Finite Element Method and Multiscale Technique (확장유한요소법과 멀티스케일 기법을 통한 팔라듐 첨가 탄소섬유/알루미늄 적층구조에 대한 수치해석)

  • Park, Woo Rim;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.7-14
    • /
    • 2019
  • A palladium can adsorb hydrogen and detect leaking hydrogen through changes in color and electrical resistance. This study is to evaluate the structural behavior of carbon fiber adding palladium composite materials used in the hydrogen storage vessel. A multi-scale analysis technique was used to analyze accurately the behavior of each material in relation to the microscopic composition. The multi-scale analysis is more proper and precise for composite materials because of considering the individual microscopic structure and properties of each material for composite materials. Also the crack evaluation was performed by XFEM analysis to confirm the reinforcement performance of aluminum as a liner of the hydrogen vessel. The results show that the addition of the palladium material increased the macroscopic stress, but microscopically the carbon fiber stress was reduced. It means the performance improvement of the palladium added carbon fiber/Al composite.

A Strategy Development of Hydrogen Energy Industrial Infrastructure by Using SWOT/AHP Method (SWOT-AHP 분석을 이용한 수소에너지 산업 인프라 전략 개발)

  • Han, Jang-Hyup;Kim, Su-Ji;Kim, Chae-Bogk
    • Journal of Korea Technology Innovation Society
    • /
    • v.19 no.4
    • /
    • pp.822-847
    • /
    • 2016
  • The sustainable energy has globally become more important to maintain the future industry. Of various new renewable energy types, hydrogen energy had drawn a lot of attention as clean energy. Therefore, this study applied SWOT-AHP analysis to establish a strategy for the infrastructure of hydrogen energy industry. It drew the factors required to establish the infrastructure of hydrogen energy industry based on the literature review and experts' opinions were surveyed to redesign SWOT Matrix. The AHP analysis is performed to obtain the relative importance of developed factors by pairwise comparisons. Based on research results by applying SWOT analysis and AHP, this paper proposes the development of strategic plan for infrastructure of hydrogen energy industry.

Delayed Analysis of Hydrogen-Methane Breath Samples

  • Willemsen, Marjolein;Van De Maele, Kristel;Vandenplas, Yvan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.1
    • /
    • pp.13-20
    • /
    • 2022
  • Purpose: Hydrogen-methane breath tests are used to diagnose carbohydrate malabsorption and small intestinal bacterial overgrowth. The COVID-19 pandemic has driven the modification of procedures as breath tests are potentially aerosol-generating procedures. We assessed the effect of delayed analysis of breath samples, facilitating the at-home performance of breath testing. Methods: Children provided two breath samples at every step of the lactose breath test. The samples were brought back to the clinic, and one set of samples was analyzed immediately. The second set was stored at room temperature and analyzed 1-4 days later. Results: Out of the 73 "double" lactose breath tests performed at home, 33 (45.8%) were positive. The second samples were analyzed 20 to 117 hours after the first samples (41.7±24.3 hours). There was no significant difference in the hydrogen concentration between the first and second sets (Z=0.49, p=0.62). This was not the case for methane, which had a significantly higher concentration in the second breath samples (Z=7.6). Conclusion: Expired hydrogen levels remain stable in plastic syringes if preserved at room temperature for several days. On the other hand, the delayed analysis of methane appeared to be less reliable. Further research is needed to examine the impact of delayed analysis on methane and hydrogen concentrations.

Characteristic analysis and condenser design of gas helium circulation system for zero-boil-off storage tank

  • Jangdon Kim;Youngjun Choi;Keuntae Lee;Jiho Park;Dongmin Kim;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.65-69
    • /
    • 2023
  • Hydrogen is an eco-friendly energy source and is being actively researched in various fields around the world, including mobility and aerospace. In order to effectively utilize hydrogen energy, it should be used in a liquid state with high energy storage density, but when hydrogen is stored in a liquid state, BOG (boil-off gas) is generated due to the temperature difference with the atmosphere. This should be re-condensed when considering storage efficiency and economy. In particular, large-capacity liquid hydrogen storage tank is required a gaseous helium circulation cooling system that cools by circulating cryogenic refrigerant due to the increase in heat intrusion from external air as the heat transfer area increases and the wide distribution of the gas layer inside the tank. In order to effectively apply the system, thermo-hydraulic analysis through process analysis is required. In this study, the condenser design and system characteristics of a gaseous helium circulation cooling system for BOG recondensation of a liquefied hydrogen storage tank were compared.

Evaluation of Hydrogen Embrittlement Behavior in INCONEL Alloy 617 by Small Punch Test (소형펀치 시험법을 이용한 INCONEL Alloy 617의 수소취화거동 평가)

  • Seo, Hyon-Uk;Ma, Young-Hwa;Yoon, Kee-Bong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.340-345
    • /
    • 2010
  • For the conversion into hydrogen society, not only studying facilities of hydrogen production, storage, transportation and charging system but also developing technique of ensuring safety are essentially needed. Hence, for the first step of that, evaluated the hydrogen embrittlement of Inconel alloy 617, Ni-based super heat-resisting alloy, by small punch test. Prepared the various specimens through changing electrochemical charging time and measured the toughness degradation of the specimens by small-punch test. The analysis of hydrogen embrittlement behavior were carried out by investigating the fractured surface of specimens. This study has significance on revealing mechanism of hydrogen embrittlement behavior and the factor affecting hydrogen embrittlement in the future study.