Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.2.126

Lattice Deformation and Improvement Oxidation Resistance of Ti-6Al-4V Alloy Powders Prepared by Hydrogen Added Argon Heat Treatment  

Cho, Gye-Hoon (Division of Advanced Materials Engineering, Chonbuk National University)
Oh, Jung-Min (Division of Advanced Materials Engineering, Chonbuk National University)
Lim, Jae-Won (Division of Advanced Materials Engineering, Chonbuk National University)
Publication Information
Journal of Powder Materials / v.26, no.2, 2019 , pp. 126-131 More about this Journal
Abstract
In the present work, a new hydrogen added argon heat treatment process that prevents the formation of hydrides and eliminates the dehydrogenation step, is developed. Dissolved hydrogen has a good effect on sintering properties such as oxidation resistance and density of greens. This process can also reduce costs and processing time. In the experiment, commercially available Ti-6Al-4V powders are used. The powders are annealed using tube furnace in an argon atmosphere at $700^{\circ}C$ and $900^{\circ}C$ for 120 min. Hydrogen was injected temporarily during argon annealing to dissolve hydrogen, and a dehydrogenation process was performed simultaneously under an argon-only atmosphere. Without hydride formation, hydrogen was dissolved in the Ti-6Al-4V powder by X-ray diffraction and gas analysis. Hydrogen is first solubilized on the beta phase and expanded the beta phases' cell volume. TGA analysis was carried out to evaluate the oxidation resistance, and it is confirmed that hydrogen-dissolved Ti-6Al-4V powders improves oxidation resistance more than raw materials.
Keywords
Ti-6Al-4V; Hydrogen; Heat treatment; Lattice deformation; Oxidation resistance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. S. Shin, Y. T. Hyun, N. K. Park, Y. H. Park and D. G. Lee: J. Korean Powder Metall. Inst., 24 (2017) 235.   DOI
2 R. L. Coble: J. Am. Ceram. Soc., 45 (1962) 123.   DOI
3 T. Zhu and M. Li: Mater Charact., 62 (2011) 724.   DOI
4 O. N. Senkov, B. C. Chakoumakos, J. J. Jonas and F. H. Froes: Mater. Res Bull., 36 (2001) 1431.   DOI
5 J. I. Qazi, J. Rahim, F. H. Fores, O. N. Senkov and A. Genc: Metall. Mater. Trans. A, 32 (2001) 2453.   DOI
6 P. Sun, Z. Z. Fang, M. Koopman, J. Paramore, K. S. R. Chandran, Y. Ren and J. Lu: Acta Mater., 84 (2015) 29.   DOI
7 J. S. Choe, D. H. Lee, G. S. Choi, D. S. Kil, C. Y. Suh, W. B. Kim and H. Ha: Kor. J. Mater. Res., 10 (2000) 464.
8 L. Mei, C. Wang, Y. Wei, S. Xiao and Y. Chen: Int. J. Hydrogen Energy, 43 (2018) 7102.   DOI
9 P. Sun, Z. Z. Fang, M. Koopman: Adv Eng Mater., 15 (2013) 1007.   DOI
10 W. B. Kim, G. S. Choi, C. Y. Suh, D. S. Kil and H. Ha: Kor. J. Mater. Res., 9 (1999) 282.
11 J. M. Oh, K. H. Heo, W. B. Kim, G. S. Choi and J. W. Lim: Mater Trans., 54 (2013) 119.   DOI
12 D. W. Lee, H. S. Lee, J. H. Park, S. M. Shin and J. P. Wang: Procedia Manuf., 2 (2015) 550.   DOI
13 Z. Z. Fang, P. Sun and H. Wang: Adv Eng Mater., 14 (2012) 383.   DOI
14 J. G. Ku, J. M. Oh, H. Kwon and J. W. Lim: Int. J. Hydrogen Energy, 42 (2017) 2139.   DOI