• Title/Summary/Keyword: Hydrogen accident

Search Result 185, Processing Time 0.021 seconds

A Study on the Establishment of Bunkering Safety Zone for Hydrogen Propulsion Ships in Coastal Area (연근해 수소추진선박의 벙커링 안전구역 설정에 관한 연구)

  • Sungha Jeon;Sukyoung Jeong;Dong Nam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.433-440
    • /
    • 2023
  • This study aims to establish safety zones for bunkering operations of hydrogen propulsion ships in coastal areas through risk assessment and evaluate their validity. Using a 350 kW-class ferry operating in Busan Port as the subject of analysis, with quantitative risk assessment based on accident consequence and frequency analysis, along with a social risk assessment considering population density. The results of the risk assessment indicate that all scenarios were within acceptable risk criteria and ALARP region. The most critical accident scenarios involve complete hose rupture during bunkering, resulting in jet flames (Frequency: 2.76E-06, Fatalities: 9.81) and vapor cloud explosions (Frequency: 1.33E-08, Fatalities: 14.24). For the recommended safety zone criteria in the 6% hose cross-sectional area leakage scenario, It could be appropriate criteria considering overall risk level and safety zones criteria for hydrogen vehicle refueling stations. This research contributes to establishing safety zone for bunkering operations of hydrogen propulsion ships through risk assessment and provides valuable technical guidelines.

Possible Containment Failure Mechanisms in Severe Core Meltdown Accidents (중대 노심사고시 격납용기 손상유형에 대한 고찰)

  • Kang Yul Huh;Jong In Lee;Jin Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.53-67
    • /
    • 1985
  • The severe core meltdown accident, which is not included as a design basis accident, has high consequence and low probability of occurrence and turns out to be a major risk factor in the overall risk assessment. The physical mechanisms of containment failure in core meltdown accidents are identified as steam explosion, debris bed coolability, hydrogen burning, steam spike and concrete interaction. The state of technology review is made for each subtopic about the previous and current researches for better understanding of the phenomenon.

  • PDF

Influence of hydrogen concentration on burst parameters of Zircaloy-4 cladding tube under simulated loss-of-coolant accident

  • Suman, Siddharth
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2047-2053
    • /
    • 2020
  • Single-tube burst tests on hydrogenated Zircaloy-4 nuclear fuel cladding under simulated loss-of-coolant accident are conducted to evaluate the impact of hydrogen on burst parameters. The heating rate and initial pressure are varied from 5 K/s to 150 K/s and 5 bar-80 bar, respectively. The hydrogen concentration in the cladding is in the range of 0-2000 wppm. Burst stress is lower for hydrogenated cladding in α-phase. A significant loss of ductility is observed in α-phase and lower α + β-phase for hydrogenated cladding. However, the burst strain is higher for hydrogenated cladding in β-phase. There is a sigmoidal dependency of rupture area with initial stress and rupture area is larger for hydrogenated cladding. A novel burst stress correlation for hydrogenated Zircaloy-4 cladding has been proposed.

THE NUMERICAL SIMULATION OF HYDROGEN DIFFUSION FOR THE HYDROGEN LEAKAGE IN TUNNEL (터널 내 수소연료 자동차의 수소 누설로 인한 수소 확산에 대한 수치해석 연구)

  • Ahn, Hyuk-Jin;Jung, Jae-Hyuk;Hur, Nahm-Keon;Lee, Moon-Kyu;Yong, Gee-Joong
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.47-54
    • /
    • 2010
  • In the present study, a numerical simulation for the diffusion of hydrogen leakage of FCV(Fuel Cell Vehicle) in a tunnel was performed to aid the assessment of risk in case of leakage accident. The temporal and spatial distributions of the hydrogen concentration around FCV are predicted from the present numerical analyses. Flammable region of 4-74% and explosive region of 18-59% hydrogen by volume was identified from the present results. Factors influencing the diffusion of the hydrogen jet were examined to evaluate the effectiveness of tunnel ventilation system for relieving the accumulation of the leaked hydrogen gas. The distribution of the concentration of the leaked hydrogen for various cases can be used as a database in various applications for the hydrogen safety.

Proposal and Analysis of Hydrogen Mitigation System Guiding Hydrogen in Containment Building

  • Park, Kweonha;Lee, Khor Chong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.516-521
    • /
    • 2015
  • This study is about a hydrogen mitigation system in a containment building like an offshore or a nuclear plant. A hydrogen explosion is possibly happened after condensation of steam if hydrogen releases with steam in a containment buildings. Passive autocatalytic recombiner is the one of the measures, but the performance of this equipment is not sure because the distribution of hydrogen is very irregular and is not predicted correctly. This study proposes a new approach for improving the hydrogen removing performance with hydrogen-guiding property. The steam is simulated and analysed. The results show that the shallow air containment reduced over 55% of the released hydrogen and the deep air containment type reduces over 80% of released hydrogen.

A NUMERICAL SIMULATION OF HYDROGEN DIFFUSION FOR THE HYDROGEN LEAKAGE FROM FCV IN UNDERGROUND PARKING LOT (지하주차장 내 수소연료 자동차의 수소 누설로 인한 수소 확산에 대한 수치해석 연구)

  • Choi, J.;Hur, N.;Lee, E.D.;Lee, K.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.477-482
    • /
    • 2011
  • In the present study, the diffusion process of hydrogen leaking from a FCV (Fuel Cell Vehicle) in an underground parking lot was analyzed by numerical simulations in order to assess the risk of a leakage accident. The temporal and spatial changes of the hydrogen concentration as well as the flammable region in the parking lot were predicted numerically. The effects of the leakage flow rate and an additional ventilation fan were investigated to evaluate the ventilation performance in the parking lot to relieve the accumulation of the leaked hydrogen gas. The present numerical analysis can provide useful information such as the distribution of the leaked hydrogen concentration for safety of various hydrogen applications.

  • PDF

Quantitative Safety Assessment for Hydrogen Station Dispenser (수소 충전소 충전기의 정량적 안전성 평가)

  • Rhie, Kwang-Won;Kim, Tae-Hun;Lee, Taeck-Hong
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.3
    • /
    • pp.272-278
    • /
    • 2006
  • This study is quantitatively assessing of safety about dispenser of hydrogen station because it is hydrogen energy to efficient safety use. The large leakage of hydrogen gas is the most important accident among others occurrence possibility in hydrogen station. It had written FT by top event and calculated unavailability, m-cutsets, leakage frequency, etc with FTA after each base event collect reliability data by reliability data handbook, THERP-HRA and estimation of the engineering.

Analysis of fission product reduction strategy in SGTR accident using CFVS

  • Shin, Hoyoung;Kim, Seungwoo;Park, Yerim;Jin, Youngho;Kim, Dong Ha;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.812-824
    • /
    • 2021
  • In order to reduce risks from the Steam Generator Tube Rupture (SGTR) accident and to meet safety targets, various measures have been analyzed to minimize the amount of fission product (FP) release. In this paper, we propose an introduction of a Containment Filtered Venting System (CFVS) connected to the steam generator secondary side, which can reduce the amount of FP release while minimizing adverse effects identified in the previous studies. In order to compare the effect of new equipment with the existing strategy, accident simulations using MELCOR were performed. As a result of simulations, it is confirmed that CFVS operation lowers FP release into the environment, and the release fractions are lower (minimum 0.6% of the initial inventory for Cs) than that of the strategy which intends to depressurize the primary system directly (minimum 15.2% for Cs). The sensitivity analyses identify that refill of the CFVS vessel is a dominant contributor reducing the amount of FP released. As the new strategy has the possibility of hydrogen combustion and detonation in CFVS, the installation of an igniter inside the CFVS vessel may be considered in reducing such hydrogen risk.

Assessment of the core-catcher in the VVER-1000 reactor containment under various severe accidents

  • Farhad Salari;Ataollah Rabiee;Farshad Faghihi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.144-155
    • /
    • 2023
  • The core catcher is used as a passive safety system in new generation nuclear power plants to create a space in the containment for the placing and cooling of the molten corium under various severe accidents. This research investigates the role of the core catcher in the VVER-1000 reactor containment system in mitigating the effects of core meltdown under various severe accidents within the context of the Ex-vessel Melt Retention (EVMR) strategy. Hence, a comparison study of three severe accidents is conducted, including Station Black-Out (SBO), SBO combined with the Large Break Loss of Coolant Accident (LB-LOCA), and SBO combined with the Small Break Loss of Coolant Accident (SB-LOCA). Numerical comparative simulations are performed for the aforementioned scenario with and without the EX-vessel core-catcher. The results showed that considering the EX-Vessel core catcher reduces the amount of hydrogen by about 18.2 percent in the case of SBO + LB-LOCA, and hydrogen production decreases by 12.4 percent in the case of SBO + SB-LOCA. Furthermore, in the presence of an EX-Vessel core-catcher, the production of gases such as CO and CO2 for the SBO accident is negligible. It was revealed that the greatest decrease in pressure and temperature of the containment is related to the SBO accident.

An Experimental Study on the Explosion of Hydrogen Tank for Fuel-Cell Electric Vehicle in Semi-Closed Space (반밀폐공간에서 발생되는 차량용 수소연료탱크 폭발 실험)

  • Park, Jinouk;Yoo, Yongho;Kim, Hwiseong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.73-80
    • /
    • 2021
  • Recently, Korea has established a plan for the supply of hydrogen vehicles and is promoting the expansion of the supply. Risk factors for hydrogen vehicles are hydrogen leakage, jet fire, and explosion. Therefore Safety measures are necessary for this hazard. In addition, risks in semi-closed spaces such as tunnels, underground roads, and underground parking lots should be analyzed. In this study, an explosion experiment was conducted on a hydrogen tank used in a hydrogen vehicle to analyze the risk of a hydrogen vehicle explosion accident that may occur in a semi-closed space. As results, the effect on the structure and the human body was analyzed using the overpressure and impulse values for each distance generated during the explosion.