• Title/Summary/Keyword: Hydrogen Storage Alloy

Search Result 127, Processing Time 0.022 seconds

Single Wall Carbon Nanotube - a catalyst support for PEMEC

  • Rajalakshmi N.;Ryu Hojin;Shaijumon M.M.;Ramaprabhu S.
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.183-187
    • /
    • 2003
  • Carbon nanotubes, prepared by the catalytic decomposition of acetylene at $700^{\circ}C$ over a Mm based $AB_5$ hydrogen storage alloy hydride catalysts, have been used as a support for platinum electrocatalysts. The performance of this electrocatalyst In proton exchange membrane fuel cells has been studied and discussed.

  • PDF

Evaluation of Hydrogen Properties on Mg2NiHx-Graphene Composites by Mechanical Alloying (기계적 합금화법으로 제조한 Mg2NiHx-Graphene 복합재료의 수소화 특성 평가)

  • Lee, Young-Sang;Lee, Soo-Sun;Lee, Byung-Ha;Jung, Seok;Hong, Tae-Whan
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • Mg hydride has a high hydrogen capacity (7.6%), at high temperature, and is a lightweight and low cost material, thus it a promising hydrogen storage material. However, its high operation temperature and very slow reaction kinetics are obstacles to practical application. In order to overcome these disadvantages of Mg hydride, graphene powder was added to it. The addition of graphene has been shown to reduce the operating temperature of dehydrogenation. Moreover, in this report the environmental aspects of $MgH_x$-Graphene composites are investigated by means of the environmental life cycle assessment (LCA) method. $MgH_x$-Graphene mixture was prepared by hydrogen induced mechanical alloy (HIMA). The synthesized powder was characterized by XRD(X-ray Diffraction). The hydrogenation behaviors were evaluated by using a Sievert's type automatic PCT apparatus. Such evaluation of Materials also conducted in the LCA. From the result of P-C-T(Pressure-Composition-Temperature) curves, the $MgH_x$-3wt.% graphene composite was evaluated as having a 5.86wt.% maximum hydrogen storage capacity, at 523K. From absorption kinetic testing, the $MgH_x$-7wt.% graphene composite was evaluated as having a maximum 6.94wt.%/ms hydrogen absorption rate, at 573K. Environment evaluation results for the $MgH_x$-graphene composites and other materials indicated environmental impact from the electric power used and from the materials themselves.

Characteristics of electrodes using V-Ti based hydrogen storage alloys (V-Ti계 수소저장합금의 전극특성)

  • 김주완;이성만;백홍구
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.284-291
    • /
    • 1997
  • The electrode characteristics of two kinds of metal hydride electrodes using V-Ti (V-rich) based alloy were studied, in which one electrode was prepared by sintering the mixture of V-Ti alloy and Ni powders by a rapid thermal annealing technique and the other one was prepared using V-Ti-Ni ternary alloy, The discharge capacities of all electrodes during the charge-discharge cycling were completely deteriorated within 10 cycles. It appeared that the deterioration of the electrodes was caused by the dissolution of V in the near-surface region into the electrolyte and the formation of $TiO_2$ layer on the alloy particle surface. This degradation mechanism was supported by the facts that V is main hydride forming element and $TiO_2$ has very low electrical conductivity and hydrogen diffusivity.

  • PDF

Hydrogen Absorption and Desorption Behaviors of the Metal Hydride Fuel Tank for Hydrogen Vehicle (수소저장합금을 이용한 수소자동차 연료저장탱크의 수소흡수-방출거동에 관한 연구)

  • Lee, Soo-Geun;Lee, Han-Ho;Jung, Jai-Han;Kim, Dong-Myung;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.5 no.2
    • /
    • pp.81-90
    • /
    • 1994
  • The hydrogen fuel tanks having hydrogen storing capacity of about 300g and 1200g are manufactured using $MmNi_{4.7}Al_{0.25}V_{0.05}Fe_{0.001}$ alloy. They are composed of several unit reactor made of Cu-tube(outer diameter = 50.1mm, thickness = 2mm). In order to increase the heat and mass transfer property of the hydride bed, Al-plates are inserted perpendicular to axial direction at intervals of 5mm and three arteries of diameter 8mm are installed symmetrically in each unit reactor. Hydrogen absorption is proceeded about 80% within 30 minute and is completed within 60 minute at the conditions of charging hydrogen pressure of 25atm and temperature of $22^{\circ}C$. On desorbing hydrogen at a constant rate of 30 slm at $20^{\circ}C$, discharging hydrogen pressure is sustained at 3~5atm for 120 minutes. The discharging pressure is increased upto 5~8atm as the increase of the reactor temperature to $30^{\circ}C$. From the experimental results and the brief discussions about the hydrogen absorption and disorption behaviors of the hydrogen storage tank, it is suggested that the behaviors of hydrogen charging and discharging could be controlled by adjusting the operating parameters and the reactor design parameters.

  • PDF

Synthesis of Mg2Ni by mechanical alloying and its electrochemical characteristics for Ni-MH secondary battery (Ni-MH 2차 전지용 Mg2Ni의 기계적 합금화법에 의한 제조 및 전기화학적 특성)

  • Moon, Hong-Gi;Choi, Seung-Jun;Kim, Dae-Hwan;Park, Choong-Nyeon
    • Journal of Hydrogen and New Energy
    • /
    • v.10 no.4
    • /
    • pp.225-232
    • /
    • 1999
  • The $Mg_2Ni$ hydrogen storage alloys which have much higher theoretical discharge capacity than $AB_5$ and $AB_2$ type alloys were synthesized by mechanical alloying with some additives and subjected to the electrochemical measurements. Two different processes were employed to the synthesis of $Mg_2Ni$ alloys with using the high energy ball mill SPEX 8000. One was only ball milling, 12 hrs, the Mg and Ni powders for 12 hrs with additives such as $AB_5$, Ni, Co and Cu powders. In the other process the Mg and Ni powders were ball milled for 1 hr first and then heat treated at $300{\sim}400^{\circ}C$ for 1 hr to get $Mg_2Ni$ alloy, and finally the $Mg_2Ni$ alloy powders were ball milled with the additives for 12 hrs. The alloy powders prepared were compacted at room temperature under $7.64tons/cm^2$ into disk type electrodes for the electrochemical measurements. The experimntal results showed that the electrodes prepared with the heat treated alloy powders had a higher discharge capacities than those without heat treatment. The addition of Ni caused an increase of the discharge capacity and the addition of Co improved the cycling characteristics. The electrode prepared by ball milling of $Mg_2Ni$ and 10wt% Ni powders has showed the highest discharge capacity, 546mAh/g.alloy, which was 55% of the theoretical capacity.

  • PDF

A Study on the Hydrogenation Properties of TiNi Alloy Fabricated by Mechanical Alloying Method (기계적합금법에 의해 제조된 TiNi합금의 수소화반응특성에 관한 연구)

  • Ahn, Hyo-Jun;Kim, Bo-Su;Hwang, Jin-Hwan;Ahn, In-Shup;Kim, Ki-Won;Hur, Bo-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.5 no.2
    • /
    • pp.73-79
    • /
    • 1994
  • The hydrogenation behavior of Ti-Ni powders prepared by mechanical alloying in a high energy ball mill have been investigated by P-C isotherm curves, DSC(differential scanning calorimetry), X-ray diffractometer, SEM(scanning electron microscope). Amorphous TiNi phase was formed after 10 milling hours. The hydrogen storage capacity gradually decreased as a function of mechanical alloying time. There appears the DSC endothermic peak due to hydrogen evolution of amorphous hydride phase.

  • PDF

Electrode characteristics of amorphous Mg-Ni-Ti hydrogen storage alloy synthesized by mechanical alloying (기계적 합금화법에 의해 제조된 비정질 Mg-Ni-Ti계 수소저장합금의 전극 특성)

  • Lee Eun Yeong;Jeong Gyeong Seop;Seok Nam Yeong;Lee Gyeong Seop
    • 한국전기화학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.335-340
    • /
    • 2005
  • Amorphous $MgNi_{1-x}Ti_x$ alloys with the composition of x=0.02, 0.03, 0.05 and 0.07 were synthesized by mechanical alloying. The synthesized alloys were investigated by electrochemical test, XRD and SEM. As increasing Ti concentration, the initial discharge capacity was raised more than that of nanocrystalline Mg-Ni 289 mAh/g, but the electrodes were degraded faster. Comparing to other synthesized alloys, $MgNi_{0.95}Ti_{0.05}$ alloy showed the highest initial discharged capacity 474 mAh/g and maintained $54\%$ of the initial capacity after 10 cycles.

  • PDF

Hydrogen Storage Properties of Mg Alloy Prepared by Incorporating Polyvinylidene Fluoride via Reactive Milling

  • Song, Myoung Youp;Kwak, Young Jun
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.878-884
    • /
    • 2018
  • In the present work, we selected a polymer, polyvinylidene fluoride (PVDF), as an additive to improve the hydrogenation and dehydrogenation properties of Mg. 95 wt% Mg + 5 wt% PVDF (designated Mg-5PVDF) samples were prepared via milling in hydrogen atmosphere (reactive milling), and the hydrogenation and dehydrogenation characteristics of the prepared samples were compared with those of Mg milled in hydrogen atmosphere. The dehydrogenation of magnesium hydride formed in the as-prepared Mg-5PVDF during reactive milling began at 681 K. In the fourth cycle (n=4), the initial hydrogenation rate was 0.75 wt% H/min and the quantity of hydrogen absorbed for 60 min, $H_a$ (60 min), was 3.57 wt% H at 573 K and in 12 bar $H_2$. It is believed that after reactive milling the PVDF became amorphous. The milling of Mg with the PVDF in hydrogen atmosphere is believed to have produced defects and cracks. The fabrication of defects is thought to ease nucleation. The fabrication of cracks is thought to expose fresh surfaces, resulting in an increase in the reactivity of the particles with hydrogen and a decrease in the diffusion distances of hydrogen atoms. As far as we know, this investigation is the first in which a polymer PVDF was added to Mg by reactive milling to improve the hydrogenation and dehydrogenation characteristics of Mg.

The Effects of Partial Substitution of Mo and Heat Treatment on the Electrode Characteristics of ZrV0.1Mn0.7Ni1.2 Hydrogen Storage alloy (Ni-MH 2차 전지용 ZrV0.1Mn0.7Ni1.2 수소저장합금의 전극특성에 미치는 Mo의 부분치환과 열처리의 영향)

  • Han, Dongsoo;Oh, Myunghark;Jeong, Chigyu;Chung, Wonsub;Kim, Ingon
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.1
    • /
    • pp.16-24
    • /
    • 1998
  • Recently Zr-based $AB_2$ type hydrogen absorbing alloy has received much attention as a negative electrode material for the Ni-MH batteries because of its high capacity. In this study $ZrV_{0.1}Mn_{0.7}Ni_{1.2}$ alloy was chosen and the effects of heat treatment and a partial substitution of the Mo in Mn site on the various electrode properties were investigated. The alloys was prepared by arc melting (as-cast sample). Some of them were heat treated at $1,100^{\circ}C$ for 4 hours. After this they were differentiated by the different cooling rates of slow cooling and quenching. Various electrode characteristics such as activation process, high rate dischargeability and self discharge characteristic were investigated with the three types of electrodes. It was found that heat treated alloys resulted in an increase in plateau flatness of P-C isotherms however both discharge capacity and high rate capability were decreased. And the partial substitution of Mo for Mn in $ZrV_{0.1}Mn_{0.7}Ni_{1.2}$ alloy improved the self-discharge characteristic without the loss of discharge capacity (300mAh/g).

  • PDF

Effects of Nickel and Iron Oxide Addition by Milling under Hydrogen on the Hydrogen-Storage Characteristics of Mg-Based Alloys

  • Song, Myoung Youp;Baek, Sung Hwan;Park, Hye Ryoung;Mumm, Daniel R.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.64-70
    • /
    • 2012
  • Samples of pure Mg, 76.5 wt%Mg-23.5 wt%Ni, and 71.5 wt%Mg-23.5 wt%Ni-5 wt%$Fe_2O_3$ were prepared by reactive mechanical grinding and their hydriding and dehydriding properties were then investigated. The reactive mechanical grinding of Mg with Ni is considered to facilitate nucleation and to shorten diffusion distances of hydrogen atoms. After hydriding-dehydriding cycling, the 76.5 wt%Mg-23.5 wt%Ni and 71.5 wt%Mg-23.5 wt%Ni-5 wt%$Fe_2O_3$ samples contained $Mg_2Ni$ phase. In addition to the effects of the creation of defects and the decrease in particle size, the addition of Ni increases the hydriding and dehydriding rates by the formation of $Mg_2Ni$. Expansion and contraction of the hydride-forming materials (Mg and $Mg_2Ni$) with the hydriding and dehydriding reactions are also considered to increase the hydriding and dehydriding rates of the mixture by forming defects and cracks leading to the fragmentation of particles. The reactive mechanical grinding of Mg-Ni alloy with $Fe_2O_3$ is considered to decrease the particle size.