• Title/Summary/Keyword: Hydrogen Potential

Search Result 907, Processing Time 0.023 seconds

High Pressure Effect of Vibration in a Hydrogen Bonding Crystal :$NH_4I$ (수소결합을 가진 결정내의 진동의 고압효과 : $NH_4I$)

  • Jeon Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.627-631
    • /
    • 1992
  • A simple one dimensional model was proposed to describe a hydrogen bonding in crystals, which was based on the Lippincott's empirical potential. The model was used to calculate internal stretching vibrational frequencies of $NH_4I$ crystal at high pressures. The calculated results were in agreement with Raman experimental results qualitatively. At relatively lower high pressures, as pressure increases internal stretching vibrational frequencies shift lower due to increase of the hydrogen bonding effect. At higher pressures, the frequencies shift higher due to the repulsive contribution of interatomic potential induced by the reduction of interatomic distance as pressure increases.

  • PDF

Fracture Toughness Evaluation of Natural Gas Pipeline under the Cathodic Protection

  • Kim, Cheol-Man;Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.133-138
    • /
    • 2009
  • For the corrosion protection of the natural gas transmission pipelines, two methods are used, cathodic protection and coating technique. In the case of cathodic protection, defects are embrittled by occurring hydrogen at the crack tip or material surface. It is however very important to evaluate whether cracks in the embrittled area can grow or not, especially in weld metal. In this work, on the basis of elastic plastic fracture mechanics, we performed the CTOD testing with various test conditions, such as testing rate and potential. The CTOD of the base metal and the weld metal showed a strong dependence of the test conditions. The CTOD decreased with decreasing testing rate and with increasing cathodic potential. The morphology of the fracture surface showed the quasi-cleavage at low testing rate and cathodic overprotection. The low CTOD was caused by hydrogen embrittlement at crack tip.

Respondence Between Electrochemicl Fluctuations and Phenomenon for Localized Corrosion of Less-Noble Metals

  • Itoi, Yasuhiko;Take, Seisho;Tsuru, Tooru
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.35-39
    • /
    • 2008
  • We have been studying application of electrochemical noise (Fluctuation) analysis for localized corrosion. Foils of Zinc, Aluminum and Magnesium were used as specimens for electrochemical cell simulating localized corrosion. These specimens were dipped in sodium chloride solutions adjusted to each exponent of Hydrogen ion concentration (pH) condition of 5.5, 10, 12 respectively. Time variations of potential and current were measured in those solutions, and simultaneously the surfaces of specimens were observed using microscope with television monitor. Two types of electrochemical cells were arranged for experiments simulated localized corrosion. The fluctuations on trendy component of short-circuited potential and short-circuited current were appeared in synchronization. It was seemed that these fluctuations result from hydrogen evolution on the aluminum active site in the crevice from the microscopic observation. In the case of zinc and magnesium, fluctuations appeared on the trendy component of the corrosion potential. Two types fluctuation were detected. First one is the fluctuation varied periodically. The second one is the random fluctuation. It was seemed that these fluctuations result from generation of corrosion products and hydrogen evolution on the active site in the crevice of zinc and magnesium from the microscopic observation.

Effects of the Counter Ion Valency on the Colloidal Interaction between Two Cylindrical Particles

  • Lee, In-Ho;Dong, Hyun-Bae;Choi, Ju-Young;Lee, Sang-Yup
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.567-572
    • /
    • 2009
  • In this study, the effects of counter ion valency of the electrolyte on the colloidal repulsion between two parallel cylindrical particles were investigated. Electrostatic interactions of the cylindrical particles were calculated with the variation of counter ion valency. To calculate the electrical repulsive energy working between these two cylindrical particles, Derjaguin approximation was applied. The electrostatic potential profiles were obtained numerically by solving nonlinear Poission-Boltzmann (P-B) equation and calculating middle point potential and repulsive energy working between interacting surfaces. The electrical potential and repulsive energy were influenced by counter ion valency, Debye length, and surface potential. The potential profile and middle point potential decayed with the counter ion valency due to the promoted shielding of electrical charge. On the while, the repulsive energy increased with the counter ion valency at a short separation distance. These behaviors of electrostatic interaction agreed with previous results on planar or spherical surfaces.

Trend in Research and Development of Lithium Complex Hydrides for Hydrogen Storage (리튬계 수소저장재료의 연구개발 동향)

  • Shim, Jae-Dong;Shim, Jae-Hyeok;Ha, Heon-Phil
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.159-167
    • /
    • 2012
  • Hydrogen is in the spotlight as an alternative next generation energy source for the replacement of fossil fuels because it has high specific energy density and emits almost no pollution, with zero $CO_2$ emission. In order to use hydrogen safely, reliable storage and transportation methods are required. Recently, solid hydrogen storage systems using metal hydrides have been under extensive development for application to fuel cell vehicles and fuel cells of MCFC and SOFC. For the practical use of hydrogen on a commercial basis, hydrogen storage materials should satisfy several requirements such as 1) hydrogen storage capacity of more than 6.5wt.% $H_2$, moderate hydrogen release temperature below $100^{\circ}C$, 3) cyclic reversibility of hydrogen absorption/desorption, 4) non toxicity and low price. Among the candidate materials, Li based metal hydrides are known to be promising materials with high practical potential in view of the above requirements. This paper reviews the characteristics and recent R&D trends of Li based complex hydrides, Li-alanates, Li-borohydrides, and Li-amides/imides.

Understanding the Mechanism of Hydrogen Adsorption into Metal Organic Frameworks (Metal-Organic Framework의 수소 흡착 메커니즘의 이해)

  • Lee, Tae-Bum;Kim, Dae-Jin;Yoon, Ji-Hye;Choi, Sang-Beom;Kim, Ja-Heon;Choi, Seung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.634-637
    • /
    • 2005
  • Hydrogen adsorption mechanism onto the porous metal-organic frameworks (MOFs) has been studied by density functional theory calculation. The selected functionals for the predict ion of interact ion energies between hydrogen and potential adsorption sites of MOF was utilized after the evaluation with the various functionals for interaction energy of $H_2C_6H_6$ model system the adsorption energy of hydrogen molecule into MOF was investigated with the consideration of the favorable adsorption sites and the orientations. We also calculated the second favorable adsorption sites by geometry optimization using every combination of two first absorbed hydrogen molecules. Based on the calculation of first and second adsorption sites and energies, the hydrogen adsorption into MOF follows a cooperative mechanism in which the initial metal sites initiate the propagation of the hydrogen adsorption on the whole frameworks. In addition, it was found that the interaction strength between the simple benzene ring with hydrogen is significantly reinforced when the benzene ring has been incorporated into the framework of MOFs.

  • PDF

Application Study of An On-site Hydrogen Production System for Power Generator Cooling (발전기 냉각용 On-Site 수소 생산 시스템 적용연구)

  • Moon, Jeon-Soo;Lee, Jae-Kun;Park, Pyl-Yang;Park, Kyoung-Il
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.5
    • /
    • pp.410-415
    • /
    • 2009
  • A hydrogen cooling method is used in a power generator for removing the unnecessary heat due to the windage loss of a rotor and the joule heat of a stator. A MEA (Membrane Electrolyte Assembly) hydrogen generator has been developed and applied as a hydrogen supplying system for the cooling of a 350MW power generator. As a field application result, the average potential of eleven cells and the voltage efficiency were measured 2.26V/cell and 65.4% (Higher Heating Value) respectively at the hydrogen pressure of 6 Bar, the hydrogen flow rate of 9.1L/min, and the current of 150A.

Detection of Hydrogen Peroxide in vitro and in vivo Using Peroxalate Chemiluminescent Micelles

  • Lee, Il-Jae;Hwang, On;Yoo, Dong-Hyuck;Khang, Gil-Son;Lee, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2187-2192
    • /
    • 2011
  • Hydrogen peroxide plays a key role as a second messenger in the normal cellular signaling but its overproduction has been implicated in various life-threatening diseases. Peroxalate chemiluminescence is the light emission from a three component reaction between peroxalate, hydrogen peroxide and fluorophores. It has proven great potential as a methodology to detect hydrogen peroxide in physiological environments because of its excellent sensitivity and specificity to hydrogen peroxide. We developed chemiluminescent micelles composed of amphiphilic polymers, peroxalate and fluorescent dyes to detect hydrogen peroxide at physiological concentrations. In this work, we studied the relationship between the chemiluminescence reactivity and stability of peroxalate by varying the substitutes on the aryl rings of peroxalate. Alkyl substitutes on the aryl ring of peroxalate increased the stability against water hydrolysis, but diminished the reactivity to hydrogen peroxide. Chemiluminescent micelles encapsulating diphenyl peroxalate showed significantly higher chemiluminescence intensity than the counterpart encapsulating dimethylphenyl or dipropylphenyl peroxalate. Diphenyl peroxalate-encapsulated micelles could detect hydrogen peroxide generated from macrophage cells stimulated by lipopolysaccharide (LPS) and image hydrogen peroxide generated during LPS-induced inflammatory responses in a mouse.

A HYDROGEN FUELLED V-8 ENGINE FOR CITY-BUS APPLICATION

  • Sierens, R.;Verhelst, S.
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.39-45
    • /
    • 2001
  • Hydrogen is seen as one of the important energy vectors of the next century. Hydrogen as a renewable energy source, provides the potential for a sustainable development particularly in the transportation sector. Hydrogen driven vehicles reduce both local as well as global emissions. The laboratory of transporttechnology (University of Gent) converted a GM/Crusader V-8 engine for hydrogen use. Once the engine is optimised, it will be built in a low-floor midsize hydrogen city bus for public demonstration. For a complete control of the combustion process and to increase the resistance to backfire (explosion of the air-fuel mixture in the inlet manifold), a sequential timed multipoint injection of hydrogen and an electronic management system is chosen. The results as a function of the engine parameters (ignition timing. injection timing and duration, injection pressure) we given. Special focus is given to topics related to the use of hydrogen as a fuel: ignition characteristics (importance of electrode distance), quality of the lubricating oil (crankcase gases with high contents of hydrogen), oxygen sensors (very lean operating conditions), noise reduction (configuration and length of inlet pipes). The advantages and disadvantages of a power regulation only by the air to fuel ratio (as for diesel engines) against a throttle regulation (normal gasoline or gas regulation) are examined. Finally the goals of the development of the engine are reached: power output of 90 kW, torque of 300 Nm, extremely low emission levels and backfire-safe operation.

  • PDF