• Title/Summary/Keyword: Hydrogen Potential

Search Result 928, Processing Time 0.03 seconds

Reuse of Hydrogen Sulfide by Ferric Chelate Reaction of Food Waste Anaerobic Digestion Gas, Sulfur Recovery and its Economic Evaluation (킬레이트 착화학반응에 의한 음식물폐기물 혐기소화가스 중 황화수소의 제거와 황회수 및 경제성평가)

  • Park, Young G.;Yang, Youngsun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.367-374
    • /
    • 2014
  • Several experiments have been done to investigate the removal of hydrogen sulfide ($H_2S$) synthetic gas from biogas streams by means of chemical absorption and chemical reaction with 0.1-1 M Fe/EDTA solution. The roles of Fe/EDTA were studied to enhance the removal efficiency of hydrogen sulfide because of oxidizing by chelate. The motivation of this investigation is first to explore the feasibility of enhancing the toxic gas treatment in the biogas facility. The biogas purification strategy affords many advantages. For instance, the process can be performed under mild environmental conditions and at low temperature, and it removes hydrogen sulfide selectively. The end product of separation is elemental sulfur, which is a stable material that can be easily disposed with minor potential for further pollution. As the Fe-EDTA concentration increased, the conversion rate of hydrogen sulfide increased because of the high stability of Fe-EDTA complex. pH as an important environmental factor was 9.0 for the stability of chemical complex in the oxidation of hydrogen sulfide.

Analysis of Adsorption Phenomena of Hydrogen on Carbon Nanotube usint Molecular Simulation (분자 모사를 이용한 탄소나노튜브의 수소 흡착 현상 분석)

  • Chun, Dong Hyuk;Moon, Jong-Ho;Kim, Hyun Uk;Park, Young Cheol;Lee, Tai-Yong
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.7-12
    • /
    • 2014
  • Molecular simulation was performed to evaluate the possibility of hydrogen storage of carbon nanotubes. The equilibrium state of hydrogen adsorbed on carbon nanotubes was simulated by grand canonical Monte Carlo method at constant temperature and pressure. The interaction energy between hydrogen molecule and carbon nanotube was calculated by Lennard-Jones potential model. According to the interaction energy calculated, more hydrogen molecules were adsorbed on the inside than the outside of nanotubes. Whereas the adsorption strength was higher outside than inside. Adsorption capacity was investigated for various temperature and pressure. The maximum capacity of carbon nanotube for hydrogen storage was 2.5wt% at 200 K and 200 bar.

Detection and Evaluation Technique of Hydrogen Attack (수소손상 검출과 평가기술)

  • Won, Soon-Ho;Hyun, Yang-Ki;Lee, Jong-O;Cho, Kyung-Shik;Lee, Jae-Do
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.32-37
    • /
    • 2002
  • The presence of hydrogen in industrial plants is a source of damage. Hydrogen attack is one such form of degradation and often causing large tube ruptures that necessitate an immediate shutdown. Hydrogen attack may reduce the fracture toughness as well as the strength of steels. This reduction is caused partially by the presence of cavities and microcracks at the grain boundaries. In the past several techniques have been used with limited results. This paper describes the application of an ultrasonic velocity and attenuation in hydrogen damage. Ultrasonic tests showed a decrease in wave velocity and an increase in attenuation. Such results demonstrate the potential for ultrasonic nondestructive testing to quantify damage. Based on this study, reliable recommendation is suggested to detect hydrogen attack.

Development of Low Carbon Hydrogen Production Technology Evaluation Model Using Delphi-AHP Method (Delphi-AHP 방법을 이용한 저탄소수소 생산 기술 가치평가 모델 개발)

  • HO SEOK WHANG;UISIK KIM;YOUNGSHIN JANG;JUNGHWAN KIM;KWANG JUN KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.2
    • /
    • pp.113-121
    • /
    • 2023
  • Recently, low hydrogen carbon production technology is drawing interest due to lower production costs. Although the pace of research in this field has been accelerating, there is no well-established criteria for evaluation. The most of current evaluation methods needs information related to technology. However the technology is not enough to provide effective evaluation criteria because the technology is not fully developed. In this study, we propose an integrated Delphi-analytic hierarchy process (AHP) method and low carbon hydrogen production technology evaluation model. Experts opinion is used to provide evaluation criteria for the technology. In this study, integrated Delphi-AHP method are utilized for determining factors and calculating their numerical importance based on experts opinion. Then, sensitivity analysis is performed to verify the robustness of the analysis and scenarios of potential changes. As many as 11 factors are identified by Delphi method. Then, numerical importance of the factors are calculated by AHP. Sensitivity analysis is performed. It shows that intellectual property right (IPR) is always more important than other factors. This study proposes the numerical standard for the low carbon hydrogen production technology evaluation. The proposed model can be used for technology evaluation or commercialization.

A Study on Active Ion Transport Technology to Improve Water Electrolysis System Performance (수전해 시스템 성능 향상을 위한 능동 이온수송 기술 연구)

  • HYEON-JUNG KIM;HAO GUO;SANG-YOUNG KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.2
    • /
    • pp.132-140
    • /
    • 2023
  • In this study, rotary magnet holder (RMH) was manufactured to analyze the ion transport effect according to the rotating magnetic field for the hydrogen production efficiency by alkaline water electrolyte. In the experiment, the voltage signal according to the magnet arrangement inside the RMH, the rotation speed, and the rotation time was measured using the voltage measurement module. As a result of the voltage signal measurement experiment, the average potential difference increased as the rotation speed of the RMH increased. Through the results of the voltage signal measurement experiment, the most efficient magnet arrangement (case 2) was applied to the RMH to conduct a water electrolysis experiment. A 20% NaOH aqueous solution was filled in the electrolytic cell, and a direct current 2 V constant voltage was applied to measure the current value according to the RMH rotation to compare the hydrogen generation amount. When rotating at 100 RPM, the hydrogen production efficiency increased by 8.06% compared to when not rotating. Considering the area exceeding +25 mA, which was not measured at the beginning of the experiment, an increase in hydrogen production of about 10% or more can be expected.

Can Artificial Intelligence Boost Developing Electrocatalysts for Efficient Water Splitting to Produce Green Hydrogen?

  • Jaehyun Kim;Ho Won Jang
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.175-188
    • /
    • 2023
  • Water electrolysis holds great potential as a method for producing renewable hydrogen fuel at large-scale, and to replace the fossil fuels responsible for greenhouse gases emissions and global climate change. To reduce the cost of hydrogen and make it competitive against fossil fuels, the efficiency of green hydrogen production should be maximized. This requires superior electrocatalysts to reduce the reaction energy barriers. The development of catalytic materials has mostly relied on empirical, trial-and-error methods because of the complicated, multidimensional, and dynamic nature of catalysis, requiring significant time and effort to find optimized multicomponent catalysts under a variety of reaction conditions. The ultimate goal for all researchers in the materials science and engineering field is the rational and efficient design of materials with desired performance. Discovering and understanding new catalysts with desired properties is at the heart of materials science research. This process can benefit from machine learning (ML), given the complex nature of catalytic reactions and vast range of candidate materials. This review summarizes recent achievements in catalysts discovery for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The basic concepts of ML algorithms and practical guides for materials scientists are also demonstrated. The challenges and strategies of applying ML are discussed, which should be collaboratively addressed by materials scientists and ML communities. The ultimate integration of ML in catalyst development is expected to accelerate the design, discovery, optimization, and interpretation of superior electrocatalysts, to realize a carbon-free ecosystem based on green hydrogen.

Investigation of the hydrogen production of the PACER fusion blanket integrated with Fe-Cl thermochemical water splitting cycle

  • Medine Ozkaya;Adem Acir;Senay Yalcin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4287-4294
    • /
    • 2023
  • In order to meet the energy demand, energy production must be done continuously. Hydrogen seems to be the best alternative for this energy production, because it is both an environmentally friendly and renewable energy source. In this study, the hydrogen fuel production of the peaceful nuclear explosives (PACER) fusion blanket as the energy source integrated with Fe-Cl thermochemical water splitting cycle have been investigated. Firstly, neutronic analyzes of the PACER fusion blanket were performed. Necessary neutronic studies were performed in the Monte Carlo calculation method. Molten salt fuel has been considered mole-fractions of heavy metal salt (ThF4, UF4 and ThF4+UF4) by 2, 6 and 12 mol. % with Flibe as the main constituent. Secondly, potential of the hydrogen fuel production as a result of the neutronic evaluations of the PACER fusion blanket integrated with Fe-Cl thermochemical cycle have been performed. In these calculations, tritium breeding (TBR), energy multiplication factor (M), thermal power ratio (1 - 𝜓), total thermal power (Phpf) and mass flow rate of hydrogen (ṁH2) have been computed. As a results, the amount of the hydrogen production (ṁH2) have been obtained in the range of 232.24x106 kg/year and 345.79 x106 kg/year for the all mole-fractions of heavy metal salts using in the blanket.

A Study on Prevention of Weld Transverse Crack for Thick Plate(Ⅱ) (후판 용접부의 횡균열 발생 방지에 관한 연구(Ⅱ))

  • Jeong, Ho-Sin;Gang, Seong-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.57-67
    • /
    • 1999
  • Welding is widely applicable and reliable process and is mainly adopted for fabricating heavy structures. Recently, weld metal transverse cracks in butt and fillet weld joint is a serious problem, and they must be eliminated for improving weld joint reliability. The weld metal transverse crack susceptibility of butt and fillet joint was carried out by cantilever type tensile crack testing jig and CTS test. In this view of point, this study investigated the potential factors for weld metal transverse crack. The main results obtained were as follows: 1. The content o fdiffusible hydrogen in weld metal played an important role for weld metal transverse cracks. 2. From cantilever type tensile crack tests, it was pointed out that the higher the diffusible hydrogen content and tensile restraint, the more susceptible to weld metal transverse craking. 3. The TSN(thermal severity number) and diffusible hydrogen were important factors for determining weld metal transverse cracks in fillet weld joints.

  • PDF

Synthesis, and Structural and Thermal Characterizations of Tetrasulfonated Poly(arylene biphenylsulfone ether) Copolymer Ion Conducting Electrolytes

  • Yoo, Dong-Jin;Hyun, Seung-Hak;Kim, Ae-Rhan;Kumar, G. Gnana;Nahm, Kee-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.4041-4048
    • /
    • 2011
  • High molecular weight tetrasulfonated poly(arylene biphenylsulfone ether) (TsPBPSEH) copolymers containing up to four pendant sulfonate groups per repeat unit were synthesized via aromatic nucleophilic displacement condensation from 4,4'-bis(4-chloro-3-sulfonatophenylsulfonyl)biphenyl-2,2'-disulfonate (SBCSBPD), 4,4'-dichlorodiphenylsulfone (DCDPS) and 4,4'-(hexafluoroisopropylidene)diphenol (6F-BPA). The synthesized copolymers were structurally characterized using $^1H$ NMR and FT-IR techniques. They were analytically pure, amorphous and were readily soluble in a wide range of organic solvents. Electrolyte membranes were successfully cast using the synthesized polymers with various sulfonation levels and N-methyl-2-pyrrolidinone. This new class of polymer membranes exhibited elevated thermal and physical stabilities and reduced swelling at high temperatures. An increase of acidic functional groups in the copolymer yielded high ion exchange capacity and moderate ionic conductivity values even at higher temperatures, which makes them potential ion conducting candidates.

A study on the activation characteristics of multi-phase Zr-based hydrogen storage alloy for Ni-MH rechargeable battery (Ni-MH 2차전지용 다상의 Zr계 수소저장합금 전극의 활성화 특성에 관한 연구)

  • Lee, Ho;Jang, Kuk-Jin;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.8 no.4
    • /
    • pp.161-171
    • /
    • 1997
  • $AB_2$ type Zr-based Laves phase alloys have been studied for potential application as negative electrode in Ni/MH batteries. However, They have a serious disadvantage of poor activation behavior in KOH solution. In this work, a new method of alloy design method was tried for improving Zr-based alloy activation. this method has focused on phase controlling to make multi-phase microstructure. In the case of multi-phase Zr-V-Mn-Ni shows good performance in activation, but activation mechanism has not been known. So, we were in search of elucidating this mechanism, Using morphological and electrochemical analysis, we could find that surface morphology and electocatalytic activity of the alloy change during immersion in KOH solution. V-rich second phases are selectively corroded and dissolved and then become Ni-rich phases. Resulting from these surface reaction in KOH solution, self-hydrogen charging occurs through Ni-rich phase. However, the alloy has poor cyclic durability because of such a corrosion mechanism. Therefore, finally we developed durable alloys by substitution of other alloying element.

  • PDF