• Title/Summary/Keyword: Hydrogen Gas Consumption

Search Result 93, Processing Time 0.021 seconds

A Study on the Improvements of Idle Performance for a SI Engine with a Syngas Assist (합성가스를 이용한 SI엔진의 아이들 성능 개선에 관한 연구)

  • Kim, Chang-Gi;Song, Chun-Sub;Cho, Young-Seok;Kang, Kern-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.4
    • /
    • pp.14-21
    • /
    • 2006
  • In this study, syngas which is reformed from fossil fuel and has hydrogen as a major component, was added to a gasoline engine to improve combustion stability and exhaust emissions of idle state. Syngas fraction of the total supplied fuel varied to 0 %, 25 %, 50 % with various ignition timing and excess air ratio. Combustion stability, exhaust emissions, fuel consumption and exhaust gas temperature were measured to investigate the effects of syngas addition on idle performance. Results showed that syngas has ability to widely extend lean operation limit and ignition retard range with dramatical reduction of engine out emissions. It is supposed that the usage of syngas in the internal combustion engine is an effective solution to meet the future strict emission regulations.

  • PDF

A Study on Idle Performance Improvements for a Gasoline Engine with the Syngas Assist (합성가스를 이용한 가솔린엔진 아이들 성능 개선에 관한 연구)

  • Song, Chun-Sub;Kim, Chang-Gi;Kang, Kern-Young;Cho, Young-Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.245-251
    • /
    • 2005
  • Recently, fuel reforming technology for the fuel cell vehicle has been applied to internal combustion engines, with various purpose. Syngas which is reformed from fossil fuel has hydrogen as a major component. It has better effort in combustion characteristics such as wide flammability and hig speed flame propagation. In this study, syngas was added to a gasoline engine for the improvement of combustion stability and exhaust emission in idle state. Combustion stability, exhaust emissions, fuel consumption and exhaust gas temperature were measured to investigate the effects of syngas addition on idle performance. Results showed that syngas has ability to extend lean operation limit and ignition retard range. with dramatical reduction of engine out emissions.

  • PDF

An Analysis on CO2 Emission and Cost Effects of Hydrogen Energy in Sedan Sector (수소에너지의 승용차부문 도입에 따른 CO2 배출 감축 및 비용효과 분석 연구)

  • Hong, Jong-Chul;Kang, Seung-Jin;Choi, Sang-Jin;Park, Sang-Young;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.9-21
    • /
    • 2009
  • As one of the alternative solution for energy and environmental issues such as climate change, energy security, oil price, etc., hydrogen energy has been getting so much attentions these days. This paper analyzed the $CO_2$ emission, costs, and energy consumptions when the hydrogen energy was introduced to transportation, specifically in Sedan sector using the energy system model, MARKAL. As results, 21.5% of $CO_2$ emission in 2040 could be reduced and additional 76 billion dollars will be needed in the high energy price scenario. The amount of energy saving mainly due to the replacement of existing car to hydrogen vehicle was 16% of the final energy consumption in 2040.

An Experimental Study on Combustion and Emission Characteristics of a CI Diesel Engine Fueled with Pentanol/Diesel Blends (압축착화 디젤엔진에서 펜탄올/경유 혼합유의 연소 및 배기 특성에 관한 실험적 연구)

  • JAESUNG KWON;BEOMSOO KIM;JEONGHYEON YANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.97-104
    • /
    • 2024
  • In this study, combustion experiments were conducted to assess engine performance and exhaust gas characteristics using four blends of 1-pentanol and diesel as fuel in a naturally aspirated 4-stroke diesel engine. The blending ratios of 1-pentanol were 5, 10, 15, and 20% by volume. The experiments were carried out under four different engine torque conditions (6, 8, 10, and 12 Nm) while maintaining a constant engine speed of 2,000 rpm for all fuel types. The results showed that the use of 1-pentanol/diesel blended fuel generally led to a decrease in brake thermal efficiency, attributed to the low calorific value of the blend and the cooling effect due to the latent heat of vaporization. Additionally, both brake specific energy consumption and brake specific fuel consumption increased. However, the use of the blended fuel resulted in a general decrease in NOx concentration, a decrease in CO concentration except some conditions, and a reduction in smoke opacity across all conditions.

Commercial Production for the Hydrogen Generation with Alkaline Electrode Cells (수소 생산을 위한 알칼라인 수전해장치 상용품 제작)

  • KIM, BO YEON;KIM, DONG JIN;KANG, EUN YOUNG;KIM, TAE WAN;SIM, HUI CHAN;LEE, TAECK HONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.206-211
    • /
    • 2015
  • For the hydrogen production, Gas Lab and Gnc make alkaline watrer electrolyzer and found optimized condition of experimental parameters of cell material and operating procedures. For the commercial production, we saved electric power consumption and caloric based efficiency with over 70%. Used cell pressures are 10 bar, 30 bar and consumed electricity is $4,000A/m^2$, 4.19 kW ($T=100^{\circ}C$) at 10 bar. Another data is $2,000A/m^2$, 3.92 kW ($T=95^{\circ}C$) at 30 bar. Applied voltage is 1.75 V ($100^{\circ}C$, 10 bar), 1.64 V ($95^{\circ}C$, 10 bar), 1.81 V ($85^{\circ}C$, 30 bar), 1.76 V ($95^{\circ}C$, 30 bar). As cell temperature increase, applied voltage has been decreased and current has been increased. The concentration of KOH solution is 30 weight %.

Analysis of Hydrogen Sales Volume in Changwon (창원 수소충전소의 수소판매량 분석)

  • KANG, BOO MIN;KANG, YOUNG TAEC;LEE, SANG HYUN;KIM, NAM SEOK;YI, KYEONG EUN;PARK, MIN-JU;JEONG, CHANG-HOON;JEONG, DAE-WOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.356-361
    • /
    • 2019
  • Since the government announced the roadmap to revitalize the hydrogen economy, we are constantly making the effort to expand the use of fuel cell electric vehicles (FCEV) and hydrogen charging stations. There is however a significant issue to build and operate the hydrogen charging station due to the lack of the profit model. Many researchers believe that the supply of FCEV will be increased in the near future and finally ensure the economy of hydrogen charging stations. This study shows that the sales changes of hydrogen gas and consumption patterns by the operation of the hydrogen charging station in Changwon City. The results will be used as the evidence to support for operating the hydrogen charging station by private businesses and the validity of additional establishment of hydrogen charging stations.

Comparative studies for the performance of a natural gas steam reforming in a membrane reactor (분리막 반응기를 이용한 천연가스 개질반응의 성능에 관한 비교 분석)

  • Lee, Boreum;Lim, Hankwon
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.95-101
    • /
    • 2016
  • For a natural gas steam reforming, comparative studies of the performance in a conventional packed-bed reactor and a membrane reactor, a new conceptual reactor consisting of a reactor with series of hydrogen separation membranes, have been performed. Based on experimental kinetics reported by Xu and Froment, a process simulation model was developed with Aspen $HYSYS^{(R)}$, a commercial process simulator, and effects of various operating conditions like temperature, $H_2$ permeance, and Ar sweep gas flow rate on the performance in a membrane reactor were investigated in terms of reactant conversion and $H_2$ yield enhancement showing improved $H_2$ yield and methane conversion in a membrane reactor. In addition, a preliminary cost estimation focusing on natural gas consumption to supply heat required for the system was carried out and feasibility of possible cost savings in a membrane reactor was assessed with a cost saving of 10.94% in a membrane reactor.

The Comparative Study of Different Membranes for Electrolytic Cell for the Hydrogen Peroxide Generation (과산화수소 발생을 위한 전해셀용 양성자 교환 막의 비교)

  • You, Sun-Kyung;Kim, Han-Joo;Kim, Tae-Il;Tsurtsumia, Gigla;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.235-238
    • /
    • 2007
  • There is great interest in the applicability of generated hydrogen peroxide to a variety of industrial processes, usually involving oxidation of organics. Hydrogen peroxide is now employed for the bleaching as well as mechanical and chemical treatment in the pulp and paper industries. It addition, it is considered as an agent to displace the traditional alkaline treatments with chlorine-based chemicals. This paper reports a comparative study of $H_2O_2$ electogeneration on gas-diffusion electrode in divided cell with several $Nafion^{(R)}$ proton-exchange membranes, Russian cation-exchange membrane MK-40 and SPEEK membrane. The influence of different PEMs on electro-chemical cell voltage, current efficiency and energy consumption of hydrogen peroxide generation has been studied.

Hydrogen Reduction of a Black Nickel Oxide Ore in a Fluidized-Bed Reactor without Sticking

  • Oh, Chang Sup;Hong, Seung-Hun;Lee, Dong-Kyu;Kim, Hang Goo;Kim, Yong Ha
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • A black nickel oxide powder, one of the commercial nickel oxide ores, was reduced by hydrogen gas in a batch-type fluidized-bed reactor in a temperature range of 350 to $500^{\circ}C$ and in a residence time range of 5 to 120 min. The hydrogen reduction behavior of the black nickel oxide was found to be somewhat different from that of green nickel oxide ore. For the black nickel oxide, the maximum temperature (below which nickel oxide particles can be reduced without any agglomeration) was significantly lower than that observed for the green nickel oxide. In addition, the best curve fittings of the Avrami model were obtained at higher values of the overall rate constant "k" and at lower values of the exponent "m", compared to those values for the green nickel oxide. It may be inferred from these results that the hydrogen reduction rate of the black nickel oxide is faster than that of the green nickel oxide in the early stages, but the situation reverses in the later stages. For the black nickel oxide ore, in spite of the low temperature sintering, it was possible to achieve a high degree fluidized-bed reduction at lower temperatures and at lower gas consumption rates than was possible for the green nickel oxide. In this regard, the use of black nickel oxide is expected to yield a benefit if its ore price is sufficiently lower than that of the green nickel oxide.

Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

  • Welaya, Yousri M.A.;Mosleh, M.;Ammar, Nader R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.529-545
    • /
    • 2013
  • Strong restrictions on emissions from marine power plants (particularly $SO_x$, $NO_x$) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heat-recovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.