• Title/Summary/Keyword: Hydrogen Fuel Cell Bus

Search Result 11, Processing Time 0.028 seconds

Design and Performance Evaluation for a Fuel Cell/Battery Hybrid Mini-Bus Based on a Simulation (시뮬레이션 기반 연료전지/2차전지 하이브리드 미니버스의 설계 및 성능 평가)

  • Kim, Min-Jin;Kong, Nak-Won;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.60-66
    • /
    • 2007
  • In terms of the vehicle efficiency, a fuel cell hybrid system has advantages compared to a conventional internal combustion engine and a fuel cell alone-powered system. The efficiency of the fuel cell hybrid vehicle mainly depends on the maximum power of the fuel cell and therefore it is important to decide the design value of the fuel cell maximum power. In this paper, to estimate the performance of the fuel cell hybrid mini-bus in the design phase the simulator based on the models for the fuel cell stack, the electric battery, the fuel cell balance of plant, the controller, and the vehicle itself is proposed. Additionally, the hybrid mini-bus efficiencies with several different fuel cell powers are simulated for a city driving schedule and are compared on another. Consequently, the proposed simulation scheme is useful to determine the best design value of the fuel cell hybrid vehicles.

Study on Side Impact Test Procedure of Hydrogen Bus (수소버스 측면충돌 시험방법 연구)

  • Kim, Kyungjin;Shin, Jaeho;Han, Kyeonghee;In, Jeong Min;Shim, Sojung;Kim, Siwoo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.92-98
    • /
    • 2021
  • Recently hydrogen fuel cell buses have been deployed for the public transportations. In order to introduce buses fueled by hydrogen successfully, the research results of hydrogen bus safety should be discussed and investigated significantly. Especially, Korean government drives research in terms of various applications of hydrogen energy to replace the conventional fuel energy resources and to improve the safety evaluation. Thus it is necessary to examine vehicle crashworthiness under side impact loadings. This study was focused on the simulation result evaluation of full bus model and simplified bus model with hydrogen fuel tank module and mounting system located below floor structure due to the significance of bus side impact accidents. The finite element models of hydrogen bus, fuel tank system and side impact moving barrier were set up and simulation results reported model performance and result comparison of two side impact models. Computational results and research discussion showed the conceptual side impact framework to evaluate hydrogen bus crashworthiness.

Demonstration Results of Fuel Cell Buses of Hyundai Motor Company (현대자동차 연료전지버스 실증 운영 결과)

  • Park, Jeongkyu;Lee, Seungyoon;Kim, Donghoon;Jin, Youngpin;Park, Jongjin;Kim, Saehoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.264-270
    • /
    • 2014
  • Fuel cell technology is the most representative area of alternative energy field on vehicle industry according to the limitation of petroleum resources. In recent years, the technology of fuel cell vehicles has made rapid progress, Hyundai Motor Company (HMC) reached to mass production of the Tucson ix hydrogen fuel cell vehicles first in the world. In addition, HMC is accelerating the development of hydrogen fuel cell buses, which have a number of advantages for hydrogen infrastructure and mass transport personnel. In this study, we examined potential of the commercialization through the demonstration of hydrogen fuel cell buses. As a result, we identified that the mass-production possibility of FCB has high potential and HMC's technology will lead to fuel cell bus industry.

Current Status of Hydrogen Consumption and Promotion Plan for the Deployment of Fuel Cell Bus in Changwon City (창원시 수소버스 운행에 따른 수소소비 현황 및 보급 활성화 방안)

  • KANG, BOO MIN;KANG, YOUNG TAEC;KIM, MIN WOO;LEE, SANG HYUN;PARK, MIN-JU;JEONG, CHANG-HOON;JEONG, DAE-WOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.479-484
    • /
    • 2019
  • Environmental problems were related to human life from second industrial revolution. Recently, peoples are interested in solving global warming problem and improving air quality. Therefore, we request for eco-friendly vehicles such as fuel cell electric vehicles using eco-friendly hydrogen energy. In order to reduce particulate matter in Korea, we have established a plan to promote the deployment of eco-friendly vehicles. In this paper, we analyzed the average monthly charging status and hydrogen consumption by introducing fuel cell bus.

Development of the Hydrogen Recirculation System for Fuel Cell Hybrid Vehicle (연료전지 하이브리드 자동차의 고효율 수소 재순환 시스템의 개발)

  • Kim, Min-Jin;Sohn, Young-Jun;Kim, Kyoung-Youn;Lee, Won-Yong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.2
    • /
    • pp.118-123
    • /
    • 2008
  • For the hydrogen recirculation system of the PEMFC (polymer electrolyte membrane fuel cell), the ejector is useful to improve the efficiency of the fuel cell system. However, conventional ejector does not keep its entrainment ratio good when the various power duties is required by the fuel cell system. In this study, the variable multi-ejector acceptable in the whole duty range required from the fuel cell hybrid mini-bus is developed. Consequently, the performance of the developed ejector is verified by the experiments based on the real operating conditions.

Development of Air Supply System for Fuel Cell Electric Bus (연료전지 버스용 공기공급시스템 개발)

  • Kim, Woo-June;Park, Chang-Ho;Cho, Kyung-Seok;Oh, Chang-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.561-564
    • /
    • 2007
  • FCEV uses electric energy which generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supply Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8$ % of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the performance of FCEV. This study will present the development process of an air blower and its consisting parts respectively.

  • PDF

Development of Air Supply System for FCEV Bus (연료전지 버스용 공기공급시스템 개발)

  • Park, Chang-Ho;Cho, Kyung-Seok;Kim, Woo-June;Oh, Chang-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.417-420
    • /
    • 2006
  • FCEV uses electric energy generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supplies Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8%$ of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the overall performance of FCEV. This study will present developing process of an air blower and its consisting parts respectively.

  • PDF

High Temperature Tensile Stress Behavior of Hydrogen Vessel Composite Materials for Hydrogen Fuel Cell Bus (수소버스용 내압용기 복합재의 열적환경에 따른 기계적 물성 연구)

  • Hyunseok, Yang;Woo-Chul, Jung;Kwang Bok, Shin;Man-Sik, Kong
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.425-430
    • /
    • 2022
  • In this study, the mechanical properties of the pressure vessel composite exposed to the thermal environment were evaluated to establish the standard for high temperature static pressure test of the pressure vessel for hydrogen bus. As the tensile strength of the composite material approaches the glass transition temperature of the epoxy resin, the strength decreases due to the deterioration of the epoxy resin. In addition, it was confirmed that the tensile strength increased again due to the post-curing of the epoxy resin during long-term exposure. Therefore, the accelerated stress rupture test conditions of the pressure vessel for the hydrogen bus should be set based on the epoxy resin properties of the carbon fiber composite material.

A Study on Power Trading Methods for in a Hydrogen Residential Model (수소주거모델의 전력 거래 참여 방안 고찰)

  • KISEOK JEONG;TAEYOUNG JYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.91-99
    • /
    • 2023
  • Participation in power trading using surplus power is considered a business model active in the domestic energy trade market, but it is limited only if the legal requirements according to the type, capacity, and use of the facilities to be applied for are satisfied. The hydrogen residential demonstration model presented in this paper includes solar power, energy storage system (ESS), fuel cell, and water electrolysis facilities in electrical facilities for private use with low-voltage power receiving system. The concept of operations strategy for this model focuses on securing the energy self-sufficiency ratio of the entire system, securing economic feasibility through the optimal operation module installed in the energy management system (EMS), and securing the stability of the internal power balancing issue during the stand-alone mode. An electric facility configuration method of a hydrogen residential complex demonstrated to achieve this operational goal has a structure in which individual energy sources are electrically connected to the main bus, and ESS is also directly connected to the main bus instead of a renewable connection type to perform charging/discharging operation for energy balancing management in the complex. If surplus power exists after scheduling, participation in power trading through reverse transmission parallel operation can be considered to solve the energy balancing problem and ensure profitability. Consequentially, this paper reviews the legal regulations on participation in electric power trading using surplus power from hydrogen residential models that can produce and consume power, gas, and thermal energy including hybrid distributed power sources, and suggests action plans.