• Title/Summary/Keyword: Hydrogen Flames

Search Result 128, Processing Time 0.025 seconds

Effect of Hydrogen Addition on Autoignited Methane Lifted Flames (자발화된 메탄 부상화염에 대한 수소 첨가의 영향)

  • Choi, Byung-Chul;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial temperature over 920 K, the threshold temperature for autoignition in methane jets, exhibited features typical of either a tribrachial edge or mild combustion depending on fuel mole fraction and the liftoff height increased with jet velocity. The liftoff height in the hydrogen-assisted autoignition regime was dependent on the square of the adiabatic ignition delay time for the addition of small amounts of hydrogen, as was the case for pure methane jets. When the initial temperature was below 920 K, where the methane fuel did not show autoignition behavior, the flame was autoignited by the addition of hydrogen, which is an ignition improver. The liftoff height demonstrated a unique feature in that it decreased nonlinearly as the jet velocity increased. The differential diffusion of hydrogen is expected to play a crucial role in the decrease in the liftoff height with increasing jet velocity.

Analysis of NO Formation in Nonpremixed Hydrogen-Air Flames Considering Turbulence-Chemistry Interaction (난류연소 모델링을 이용한 수소-공기 비예혼합 화염의 NOx 생성 분석)

  • Park, Y.H.;Moon, H.J.;Kim, S.Y.;Yoon, Y.;Jeong, I.S.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.71-79
    • /
    • 1999
  • Numerical analysis on the characteristics of nitrogen oxides (NOx) formation in turbulent nonpremixed hydrogen-air flames was carried out. Lagrange IEM model and Assumed PDF model were applied to consider turbulence-chemistry interaction known to affect the production of NOx. Partial equilibrium assumption was used to predict nonequilibrium effect to which one-half power dependence between EINOx normalized by flame residence time and global strain rate is attributed. As a result. such one-half power dependence could be reproduced only by reaction model including $HO_{2}$and $H_{2}O_{2}$, which means its dependence on Damkohler number; nonequilibrium effect. This dependence was shown better in the region of higher global strain. Besides, the improvement of turbulence model is required to predict mean flow properties quantitatively in the radial direction.

  • PDF

Acoustic Response of Hydrogen/Liquid Oxygen Flame in Stagnation-Point Flow (정체점 유동장에서 수소-액체산소 화염의 음향파 응답 특성)

  • Park, Sung-Woo;Chung, Suk-Ho;Kim, Hong-Jip
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.440-446
    • /
    • 2003
  • Steady-state structure and acoustic pressure responses of GH$_2$-LOx diffusion flames in stagnation-point flow configuration have been studied numerically with a detailed chemistry to investigate the acoustic instabilities. The Rayleigh criterion is adopted to judge the instability of the GH$_2$-LOx flames from amplification and attenuation responses at various acoustic pressure oscillation conditions for near-equilibrium to near-extinction regimes. Steady state flame structure showed that the chain branching zone is embedded in surrounding two recombination zones. The acoustic responses of GH$_2$-LOx flame showed that the responses in near-extinction regime always have amplification effect regardless of realistic acoustic frequency. That is, GH$_2$-LOx flame near-extinction is much sensitive to pressure perturbation because of the strong effect of a finite-chemistry.

Study on synthesis of carbon nanomaterials by hydrogen mixing in counterflow methane diffusion flames (메탄 대향류 확산화염내 수소를 첨가한 탄소나노물질 합성에 관한 연구)

  • Shin, Woo-Jung;Choi, Jung-Sik;Yoon, Seok-Hun;Lee, Hyun-Sik;Choi, Jae-Hyuk
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.88-89
    • /
    • 2011
  • The study on synthesis of carbon nanomaterials by H2 mixing in counterflow methane diffusion flames has been experimentally conducted. We have also investigated on effect of catalyst and temperature in flame. The counterflow flame was formed by many kind of gas (fuel side using $CH_4-H_2-N_2$ and oxidizer side $N_2-O_2$) and nitrogen shields discharge on each other side to cut off oxidizer of the atmosphere. Ferrocene was used as a metal catalyst for CNTs synthesis. substrate was used to deposit carbon nanomaterials and these were analyzed by FE-SEM. We could find that carbon nanotubes and many kind of carbon nano materials were formed in Cu wire substrate, through this experiment.

  • PDF

Unsteady Analysis of Acoustic-Pressure Responses of $N_{2}$ Diluted $H_{2}$ and Air Diffusion Flames (희석된 수소/공기 확산화염의 비정상 음향파 응답특성 해석)

  • Sohn, Chae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.320-325
    • /
    • 2003
  • Acoustic-Pressure Response of diluted hydrogen-air diffusion flames is investigated numerically by adopting a fully unsteady analysis of flame structures. In the low-pressure regime, the amplification index remains low and constant at low frequencies. As acoustic frequency increases, finite-rate chemistry is enhanced through a nonlinear accumulation of heat release rate, leading to a high amplification index. Finally, the flame responses decrease at high frequency due to the response lag of the transport zone. For a medium-pressure operation and low-frequency excitation, the amplification index is low and constant. It then decreases at moderate frequencies. As frequency increases further, the amplification index increases appreciably due to an intense accumulation effect.

  • PDF

The Function of Halogen Additive in $CH_4/O_2/N_2$ Flames ($CH_4/O_2/N_2$ 화염에서 할로겐 첨가제의 역할)

  • Lee, Ki-Yong;Shin, Sung-Su
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.209-214
    • /
    • 2003
  • Numerical simulations are performed at atmospheric pressure in order to understand the effect of additives on flame speed, flame temperature, the radical concentration, the NOx formation in freely propagating $CH_4/O_2/N_2$ flames. The additives used are carbon dioxide and hydrogen chloride which have a combination of physical and chemical behavior on hydrocarbon flame. In the flame established with the same mole of methane and additive, $CO_2$ addition significantly contributes toward the reduction of flame speed and flame temperature by the physical effect, whereas addition of HCl mainly does by the chemical effect. The impact of HCl addition on the decrease of the radical concentration is about 1.6-1.8 times as large as $CO_2$ addition. Hydrogen chloride addition is higher on the reduction of EINO than $CO_2$ addition because of the chemical effect of HCl.

  • PDF

Simultaneous PIV/OH PLIF Measurements in Hydrogen Nonpremixed Flames with Coaxial Air (PIV/OH PLIF 동시 측정을 이용한 동축공기 수소확산화염의 실험적 연구)

  • Kim, Mun-Ki;Kim, Seung-Han;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.115-123
    • /
    • 2003
  • Simultaneous measurements of velocity and OH distribution were made using particle image velocimetry(PIV) and planar laser-induced fluorescence(PLIF) of OH radical in turbulent hydrogen nonpremixed flames with coaxial air. The OH radical was used as an approximate indicator of chemical reaction zone. The OH layer was correlated well with the stoichiometric velocity, $U_s$, instantaneously and on average. In addition, high strain-rate regions almost coincide with the OH distribution. The residence time in flame surface, calculated from the root-mean-square value of the radial velocity, is proportional to $(x/d_F)^{0.7}$. It is found that the mean value of principal strain rate on the OH layer can be scaled with $(x/d_F)^{-0.7}$ and therefore, the product of the residence time and the mean strain rate remains constant over all axial positions.

  • PDF

Prediction of NOx Formation Characteristics in Turbulent Nonpremixed Hydrogen-Air Jet Flames (비예혼합 수소-공기 난류제트화염내의 NOx 생성특성 예측)

  • Kim, S.K.;Kim, Y.M.;Ahn, K.Y.;Oh, K.S.
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.165-170
    • /
    • 1998
  • Turbulent nonpremixed $H_2$-air jet flames are numerically investigated using the joint PDF model. The reaction progress variable is derived by assuming the radicals 0, H, and OH to be in partial equilibrium and additional species $HO_2$ and $H_2O_2$ in steady state. The model is extended to npnadiabatic flame by introducing additional variable for the transport of enthalpy and radiative source term is calculated using a local, geometry independent model. In terms of flame structure and NO formation, the predicted results are favorably agreed with experimental data. The effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

A Study on NO Emission Behavior through Preferential Diffusion of $H_2$ and H in $CH_4-H_2$ Laminar Diffusion Flames (메탄-수소 층류확산화염에서 $H_2$와 H의 선호확산이 NO 거동에 미치는 영향에 관한 연구)

  • Park, Jeong;Kwon, Oh-Boong;Yun, Jin-Han;Keel, Sang-In
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.3
    • /
    • pp.265-274
    • /
    • 2007
  • A study has been conducted to clarify NO emission behavior through preferential diffusion effects of $H_2$ and H in methane-hydrogen diffusion flames. A comparison is made by employing three species diffusion models. Special concerns are focused on what is the deterministic role of the preferential diffusion effects in flame structure and NO emission. The behavior of maximum flame temperatures with three species diffusion models is not explained by scalar dissipation rate but the nature of chemical kinetics. The preferential diffusion of H into reaction zone suppresses the populations of the chain carrier radicals and then flame temperature while that of $H_2$ produces the increase of flame temperature. These preferential diffusion effects of $H_2$ and H are also discussed about NO emissions through the three species diffusion models.

Nonlinear Acoustic-Pressure Responses of H2/Air Counterflow Diffusion Flames (수소/공기 대향류 확산화염의 비선형 음향파 응답특성에 관한 연구)

  • Kim, Hong-Jip;Chung, Suk-Ho;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1158-1164
    • /
    • 2003
  • Steady-state structure and acoustic-pressure responses of $H_2$/Air counterflow diffusion flames are studied numerically with a detailed chemistry in view of acoustic instability. The Rayleigh criterion is adopted to judge acoustic amplification or attenuation from flame responses. Steady-state flame structures are first investigated and flame responses to various acoustic-pressure oscillations are numerically calculated in near-equilibrium and near-extinction regimes. The acoustic responses of $H_2$/Air flame show that the responses in near-extinction regime always contribute to acoustic amplification regardless of acoustic-oscillation frequency Flames near extinction condition are sensitive to pressure perturbation and thereby peculiar nonlinear responses occur, which could be a possible mechanism in generating the threshold phenomena observed in combustion chamber of propulsion systems.