• Title/Summary/Keyword: Hydrogen Energy

Search Result 4,182, Processing Time 0.026 seconds

Status of Domestic Byproduct Hydrogen and Infrastructure (국내 부생수소 현황과 수소 유통 인프라)

  • Sim, Kyu-Sung;Kim, Jong-Won;Kim, Jung-Duk;Hwang, Gap-Jin;Kim, Heung-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.330-338
    • /
    • 2002
  • A long-term energy system in the future is expected to be based on the ideal circulation system between water and hydrogen in the sense that the hydrogen prepared from water eventually returns to water again after its use. Currently, with respect to the hydrogen energy system, it is predicted that the turning-point at which the production cost of hydrogen will become to be lower than that of fossil fuels would be after 2010. However, fuel cell technology would be able to be practically used for the applications to the transportation vehicles and small-scale power sources from 2004, and therefore, an efficient construction of the infrastructure covering hydrogen production and supply systems would be required with short-/mid-term technologies for the $CO_2$ reduction associated with fossil fuel utilization. In this paper, the hydrogen quantity available in domestic market has been estimated focusing on the hydrogen by-produced from domestic industries, and also the infrastructure for hydrogen-driven vehicles like fuel cell cars has been reviewed.

A Review of Electrochemical Hydrogen Compressor Technology (전기화학적 수소 압축기 기술)

  • KIM, SANG-KYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.578-586
    • /
    • 2020
  • There is growing interest worldwide in a hydrogen economy that uses hydrogen as an energy medium instead of hydrocarbon-based fossil fuels as a way to combat climate change. Since hydrogen has a very low energy density per unit volume at room temperature, hydrogen must be compressed and stored in order to use as an energy carrier. There are mechanical and non-mechanical methods for compressing hydrogen. The mechanical method has disadvantages such as high energy consumption, durability problems of moving parts, hydrogen contamination by lubricants, and noise. Among the non-mechanical compression methods, electrochemical compression consumes less energy and can compress hydrogen with high purity. In this paper, research trends are reviewed, focusing on research papers on electrochemical hydrogen compression technology, and future research directions are suggested.

Study on the Characteristics of Hydrogen Storage according to the Structure of Storage Tank using Metal Hydride (수소저장합금을 이용한 수소저장탱크의 구조에 따른 수소저장 특성 연구)

  • Sim, Kyu-Sung;Myung, Kwang-Sik;Kim, Jung-Duk;Kim, Jong-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.90-99
    • /
    • 2002
  • In order to utilize hydrogen energy in a large-scale in the future, development of effective hydrogen storage method is essentially required as well as that of efficient hydrogen production method. The hydrogen storage method using metal hydrides has been holding the spotlight as a safer and higher-density hydrogen storage method than conventional hydrogen storage methods such as liquid hydrogen or compressed hydrogen storage method. However when metals react with hydrogen to store hydrogen as metal hydrides, they undergo exothermic reactions, while metal hydrides evolve hydrogen by endothermic reaction. Therefore, hydrogen storage tank should have such structure that it can absorb or release reaction heat rapidly and efficiently. In this study, a review on the improvement of the heat release and absorption structure in the hydrogen storage tank was conducted, and as a result, a new type of hydrogen storage tank with the structure of vertical-type wall was designed and manufactured. Experimental results showed that this new type of tank could be used as an efficient hydrogen storage tank because its structure is simpler and manufacture is easier than cup-type hydrogen storage tank with the structure of packed horizontal cup.

Hydrogen Storage and Release Properties for Compacted Ti-Mn Alloy (컴팩션된 Ti-Mn계 합금의 수소저장 및 방출 특성)

  • KIM, JONG SEOK;HAN, WON BI;CHO, HYUN SUK;JEONG, MOON SUN;JEONG, SEONG UK;CHO, WON CHUL;KANG, KYOUNG SOO;KIM, CHANG HEE;BAE, KI KWANG;KIM, JONG WON;PARK, CHU SIK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • Hydrogen forms metal hydrides with some metals and alloys leading to solid-state storage under moderate temperature and pressure that gives them the safety advantage over the gas and liquid storage methods. However, it has disadvantages of slow hydrogen adsorption-desorption time and low thermal conductivity. To improve characteristics of metal hydrides, it is important that activation and thermal conductivity of metal hydrides are improved. In this study, we have been investigated hydrogen storage properties of Hydralloy C among Ti-Mn alloys. Also, the characteristics of activation and thermal conductivity of Hydralloy C were enhanced to improve kinetics of hydrogen adsorption-desorption. As physical activation method, PHEM (planetary high energy mill) was performed in Ar or $H_2$ atmosphere. Hydralloy C was also activated by $TiCl_3$ catalyst. To improve thermal conductivity, various types of ENG (expanded natural graphite) were used. The prepared samples were compacted at pressure of 500 bar. As a result, the activation properties of $H_2$ PHEM treated Hydralloy C was better than the other activation methods. Also, the amounts of hydrogen storage showed up to 1.6 wt%. When flake type ENG was added to Hydralloy C, thermal conductivity and hydrogen storage properties were improved.

Photoelectrochemical Hydrogen Production with Holmium-doped TiO2 (홀뮴 도핑된 TiO2를 이용한 광전기화학 수소 제조)

  • HYEONMIN JUNG;MINSEO KIM;HYEKYUNG CHO;HYUNKU JOO;KYOUNGSOO KANG;KWANGBOK YI;HANSUNG KIM;JAEKYUNG YOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.413-420
    • /
    • 2023
  • Holmium-doped TiO2 nanotubes (Ho-TNTs) were manufactured through anodization treatment and electrochemical deposition, and optimization experiments were conducted using various Holmium doping concentrations and time as variables. Surface as well as electrochemical characteristics were analyzed to study the prepared photocatalysts. Ho-TNTs were found to exist only in anatase phase through X-ray diffraction analysis. Ho-TNTs with 0.01 wt% 100 seconds shows a photocurrent density of 3.788 mA/cm2 and an effective photo-conversion efficiency (PCE) of 4.30%, which is more efficient than pure TiO2 nanotubes (pure-TNTs) (at bias potential 1.5 V vs. Hg/HgO). The photocatalytic activity of the aforementioned Ho-TNTs for hydrogen production was evaluated with the result of -29.20 µmol/h·cm2.

Investigation of Thermal Management Parameters of Metal Hydride Based Hydrogen Storage System (금속수소화물 기반 수소저장시스템의 열관리 인자 조사)

  • PARK, CHU SIK;KIM, JONG WON;BAE, KI KWANG;JEONG, SEONG UK;KANG, KYOUNG SOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.3
    • /
    • pp.251-259
    • /
    • 2018
  • Metal hydride based hydrogen storage under moderate temperature and pressure gives the safety advantage over the gas and liquid storage methods. Still solid-state hydrogen storage including metal hydride is below the DOE target level for automotive applications, but it can be adapted to stationary or miliary application reasonably. In order to develop a modular solid state hydrogen storage system that can be applied to a distributed power supply system composed of renewable energy - water electrolysis - fuel cell, the heat transfer and hydrogen storage characteristics of the metal hydride necessary for the module system design were investigated using AB5 type metal hydride, LCN2 ($La_{0.9}Ce_{0.1}Ni_5$). The planetary high energy mill (PHEM) treatment of LCN2 confirmed the initial hydrogen storage activation and hydrogen storage capacity through surface modification of LCN2 material. Expanded natural graphite (ENG) addition to LCN2, and compression molding at 500 atm improved the thermal conductivity of the solid hydrogen storage material.

Hydrogen adsorption properties of multi-walled carbon nanotubes (Multi-wall 탄소나노튜브의 수소 저장 특성)

  • Hwang, J.Y.;Lee, S.H.;Sim, K.S.;Kim, J.W.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.1
    • /
    • pp.65-73
    • /
    • 2001
  • Carbon nanotubes were prepared by catalytic decomposition of $CH_4$ using Ni-MgO catalyst at various temperatures. $H_2$ effect on crystallinity and morphology during the synthesis of carbon nanotubes was investigated. The crystallinity and morphology were characterized by SEM, TEM, XRD, TGA, and Raman spectroscopy. In addition, the hydrogen adsorption properties were evaluated by PCT measurement in a hydrogen pressure range between 1 and 120 bar. The optimal synthesis temperature of carbon nanotubes was elevated in the presence of $H_2$, although significant difference of carbon nanotube morphology was not found. It is believed that hydrogen served as self-cleaner mops the amorphous carbon on the catalyst surface. It is proved that the carbon nanotubes have multi-walled structure, short length with a outer diameter of 20 ~40nm and open tips after elimination of the catalyst. The amount of hydrogen adsorbed in carbon nanotubes is increased as the pressure of hydrogen is increased and reaches 1.3 wt % under the hydrogen pressure of 120 bar at room temperature.

  • PDF

Hydrogenase Enzyme for Photoelectrochemical Hydrogen Production from Water Splitting (광전기화학 물분해 수소 제조 기술에서 수소화효소 엔자임 활용)

  • CHO, HYEKYUNG;JUNG, HYEONMIN;YOON, JAEKYUNG;YI, KWANGBOK;KIM, HANSUNG;JOO, HYUNKU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.507-514
    • /
    • 2022
  • There is growing interest in sustainable energy sources that can reduce fossil fuel dependence and environmental pollution while meeting rapidly growing energy demands. Hydrogen have been investigated as one of the ideal alternative energies because it has relatively high efficiency without emitting pollutants. The light-sensitized enzymatic (LSE) system, which uses hydrogenase-enzymes, is one of the methods towards economically feasible system configurations that enhance the rate of hydrogen generation. Hydrogenase is an enzyme that catalyzes a reversible reaction that oxidizes molecular hydrogen or produces molecular hydrogen from protons and electrons. In this paper, utilization of [NiFe]-hydrogenase (from Pyrococcus furiosus) in photoelectrochemical hydrogen production system such as handling, immobilization, physicochemical and electrochemical analysis, process parameters, etc. was introduced.

A Comparative Assessment of Hydrogen Facility Installation for Net-Zero Energy District Planning (제로에너지단지의 적정 수소 활용 규모 및 운용방식에 관한 연구)

  • Junoh Kim;Chulhee Kim;Soyeon Chu
    • New & Renewable Energy
    • /
    • v.19 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • This study aims to evaluate the optimal size of the hydrogen facility to be installed in a zero-energy district in terms of load matching and facility efficiency. A mismatch between energy generation and consumption is a common occurrence in zero-energy districts. This mismatch adversely effects the energy grid. However, using an energy carrier such as hydrogen can solve this problem. To determine the optimal size of hydrogen fuel cells to be used on-site, simulation of hydrogen installation is required at both district-and building- levels. Each case had four operating schedules. Therefore, we evaluated eight scenarios in terms of load matching, heat loss, and facility operational efficiency. The results indicate that district-level installation of hydrogen facilities enables more efficient energy use. Additionally, based on the proposed model, we can calculate the optimal size of the hydrogen facility.

Techno-Economic Analysis of Green Hydrogen Production System Based on Renewable Energy Sources (재생에너지 기반 그린 수소 생산 시스템의 기술 경제성 분석)

  • PARK, JOUNGHO;KIM, CHANG-HEE;CHO, HYUN-SEOK;KIM, SANG-KYUNG;CHO, WON-CHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.337-344
    • /
    • 2020
  • Worldwide, there is a significant surge in the efforts for addressing the issue of global warming; the use of renewable energy is one of the solutions proposed to mitigate global warming. However, severe volatility is a critical disadvantage, and thus, power-to-gas technology is considered one of best solutions for energy storage. Hydrogen is a popular candidate from the perspective of both environment and economics. Accordingly, a hydrogen production system based on renewable energy sources is developed, and the economics of the system are assessed. The result of the base case shows that the unit cost of hydrogen production would be 6,415 won/kg H2, with a hydrogen production plant based on a 100 MW akaline electrolyzer and 25% operation rate, considering renewable energy sources with no electricity cost payment. Sensitivity study results show that the range of hydrogen unit cost efficiency can be 2,293 to 6,984 Won/kg H2, depending on the efficiency and unit cost of the electrolyzer. In case of electrolyzer operation rate and electricity unit cost, sensitivity study results show that hydrogen unit cost is in the range 934-26,180 won/kg H2.