• Title/Summary/Keyword: Hydrogen Electric Vehicle

Search Result 114, Processing Time 0.027 seconds

Measurements and Numerical Analysis of Electric Cart and Fuel Cell to Estimate Operating Characteristic of FCEV (연료전지 자동차의 주행성능 예측을 위한 전기자동차 및 연료전지의 성능실험과 수학적 모델링)

  • Cho, Yong-Seok;Kim, Duk-Sang;An, Seok-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.65-72
    • /
    • 2006
  • In new generation vehicle technologies, a fuel cell vehicle becomes more important, by virtue of their emission merits. In addition, a fuel cell is considered as a major source to generate the electricity for vehicles in near future. This paper focuses on modeling of not only an electric vehicle and but also a fuel cell vehicle to estimate performances. And an EV cart is manufactured to verify the modeling. Speed, voltage, and current of the vehicle and modeling are compared to estimate them at acceleration test and driving mode test. The estimations are also compared with the data of the Ballard Nexa fuel cell stack. In order to investigate a fuel cell based vehicle, motor and fuel cell models are integrated in a electric vehicle model. The characteristics of individual components are also integrated. Calculated fuel cell equations show good agreements with test results. In the fuel cell vehicle simulation, maximum speed and hydrogen fuel consumption are estimated. Even though there is no experimental data from vehicle tests, the vehicle simulation showed physically-acceptable vehicle characteristics.

The Efficiency Characteristics of Electric Vehicle (EV) According to the Diverse Driving Modes and Test Conditions (다양한 주행모드 및 시험 조건에 따른 전기자동차 효율 특성)

  • LEE, MIN-HO;KIM, SUNG-WOO;KIM, KI-HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.56-62
    • /
    • 2017
  • Although most electricity production contributes to air pollution, the vehicle organizations and environmental agency categorizes all EVs as zero-emission vehicles because they produce no direct exhaust or emissions. Currently available EVs have a shorter range per charge than most conventional vehicles have per tank of gas. EVs manufacturers typically target a range of 160 km over on a fully charged battery. The energy efficiency and driving range of EVs varies substantially based on driving conditions and driving habits. Extreme outside temperatures tend to reduce range, because more energy must be used to heat or cool the cabin. High driving speeds reduce range because of the energy required to overcome increased drag. Compared with gradual acceleration, rapid acceleration reduces range. Additional devices significant inclines also reduces range. Based on these driving modes and climate conditions, this paper discusses the performance characteristics of EVs on energy efficiency and driving range. Test vehicles were divided by low / high-speed EVs. The difference of test vehicles are on the vehicle speed and size. Low-speed EVs is a denomination for battery EVs that are legally limited to roads with posted speed limits as high as 72 km/h depending on the particular laws, usually are built to have a top speed of 60 km/h, and have a maximum loaded weight of 1,400 kg. Each vehicle test was performed according to the driving modes and test temperature ($-25^{\circ}C{\sim}35^{\circ}C$). It has a great influence on fuel efficiency amd driving distance according to test temperature conditions.

Current Status of Standardization for Quality Control of Hydrogen Fuel in Hydrogen Refueling Stations for Fuel Cell Electric Vehicles (수소충전소 내 연료전지용 수소연료 품질 관리 및 표준화 동향)

  • KIM, DONGKYUM;LIM, JEONG SIK;LEE, JEONGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.284-292
    • /
    • 2022
  • Hydrogen is promising a candidate for energy supporting the carbon neutrality policy for greenhouse gas reduction, which is being promoted in several countries, including Korea. Although challenging efforts-such as lowering the costs of green hydrogen production and fuel cells-remain, hydrogen fuel cell electric vehicles (FCEVs) are expected to play a significant role in the energy transition from fossil fuels to renewable energy. In line with this objective, the hydrogen FCEV working group in the International Organization for Standardization (ISO) compiled and revised international standards related to hydrogen refueling stations as of 2019. A well-established hydrogen quality management system based on the standard documents will increase the reliability of hydrogen charging stations and accelerate the use of FCEVs. In this study, among the published ISO standards and other references, the main requirements for managing charging stations and developing related techniques were summarized and explained. To respond preemptively to the growing FCEV market, a continuous hydrogen quality monitoring method suitable for use at hydrogen charging stations was proposed.

Numerical Analysis of Electromagnetic Characteristic of High Voltage/Current Cable for Fuel Cell Electric Vehicle (FCEV) (수소 연료전지 차량용 고전압 케이블의 전자파 특성 수치해석에 관한 연구)

  • Lee, Soon-Yong;Choi, Jae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.149-157
    • /
    • 2010
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) is essential. BOP systems are used many not only for motors in water pump, air blower, and hydrogen recycling pump but also inverters for these motors. Since these systems or components are connected by high voltage cables, EMC (Electromagnetic compatibility) analysis for high voltage/current cable is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields of high current/voltage cable for FCEVs is studied. From numerical analysis results, time harmonic magnetic field strength of high current/voltage cable have difference of 20~28 dB according to phase. EMI result considered ground effect of FECV at 10 m shows difference of 14.5 dB at 30 MHz and 2.8 dB at 230 MHz compared with general cable.

An Integrated Humidification System for a Fuel Cell Vehicle (연료전지 자동차용 복합형 가습시스템에 관한 연구)

  • Kim, Hyun-Yoo;Kwon, Hyuck-Ryul;Seo, Sang-Hoon;Park, Yong-Sun;Ahn, Byung-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.547-552
    • /
    • 2010
  • In this study, we suggested an integrated humidification system for a fuel cell electric vehicle (FCEV) as an efficient method of humidification under the various driving condition of the fuel cell vehicle and system. It is improving air humidification system combined the existing membrane humidifier and water injection. As a result, we verified it through experiments and the vehicle test and could get a result of improvement of humidification performance. The results show that an integrated humidification system is a useful method for FCEV applications.

Forecasting of Inspection Demand for Pressure Vessels in Hydrogen Fuel Cell Electric Vehicle using Bass Diffusion Model (Bass 확산모델을 이용한 수소전기차 내압용기 검사수요 예측)

  • Kim, Ji-Yu;Kim, Eui-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.3
    • /
    • pp.16-26
    • /
    • 2021
  • The global warming problem has arose, the supply eco-friendly vehicles such as HFCEVs is increasing around world and Korea is fully supporting subsidies, tax cut to form an initial market for HFCEVs. The key to the safety of HFCEVs is pressure vessels stored hydrogen, and although these pressure vessels must be inspection regularly, the existing inspection stations are insufficient to meet the demand for inspection. Therefore, it is important to establishment of pressure vessels inspection station for safety management of HFCEVs. In this study, it estimates innovation coefficient, imitation coefficient in Bass model by using electric vehicle sales data, and foretasted the supply of HFCEVs by region & the demand for inspection by region using the Bass diffusion model. As a result, the inspection demand for pressure vessels in HFCEVs in 2040 was 690,759 units, and it was confirmed 191 new inspection stations and 1,124 inspectors were needed to prepare for this.

Well-to-Wheel Greenhouse Gas Emissions Analysis of Hydrogen Fuel Cell Vehicle - Hydrogen Produced by Naphtha Cracking (나프타 기반 수소 연료전지 자동차의 전과정 온실가스 발생량 분석)

  • Kim, Myoungsoo;Yoo, Eunji;Song, Han Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.157-166
    • /
    • 2017
  • The Fuel Cell Electric Vehicle(FCEV) is recently evolving into a new trend in the automobile industry due to its relatively higher efficiency and zero greenhouse gas(GHG) emission in the tailpipe, as compared to that of the conventional internal combustion engine vehicles. However, it is important to analyze the whole process of the hydrogen's life cycle(from extraction of feedstock to vehicle operation) in order to evaluate the environmental impact of introducing FCEV upon recognizing that the hydrogen fuel, which is used in the fuel cell stack, is not directly available from nature, but instead, it should be produced from naturally available resources. Among the various hydrogen production methods, ${\sim}54.1%^{8)}$ of marketed hydrogen in Korea is produced from naphtha cracking process in the petrochemical industry. Therefore, in this study, we performed a well-to-wheels(WTW) analysis on the hydrogen fuel cycle for the FCEV application by using the GREET program from the US Argonne National Laboratory with Korean specific data. As a result, the well-to-tank and well-to-wheel GHG emissions of the FCEV are calculated as 45,638-51,472 g $CO_2eq/GJ$ and 65.0-73.4 g $CO_2eq/km$, respectively

High Voltage Wiring System Evaluation Methode of FCEV (Fuel Cell Electric Vehicle) (수소연료전지 자동차용 고전압 배선 시스템 평가 기술 개발)

  • Lim, Ji-Seon;Lee, Jeong-Hun;Lee, Hyo-Jeong;Na, Joo-Ran
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.330-336
    • /
    • 2012
  • FCEV uses 250 ~ 450 V instead of using 12 V battery. High voltage vehicle can cause electric shock, fire and explosion accident. Therefore, it has potential factors that can cause hazard of safety for users. United states of America and Europe legislate regulations such as ECE R100, FMVSS 305 for regulating electrical safety during driving or after collision. The company manufacturing high voltage components must do advanced R&D about Method for improving and confirming the safety of high voltage. We develop the specific hardware components of high voltage wiring system for the power train system and power supply system of Hyundai Motors FCEV. This paper shows test method of insulative performance for securing the electrical safety of high voltage components such as power cable, connectors and buss-bar, and proposals the guide line value for human safety of FCEV according to the test result of our development components.

Study for Zero Emission Vehicle Technology : Current Status and Recent Trends (무공해 자동차 기술의 현 상태와 발전방향)

  • Lee, Sunguk;Park, Byungjoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.377-384
    • /
    • 2019
  • To cope with severe global warming and environmental pollution problem regulations on automobile emissions and fuel efficiency has been tightened around the world. Therefore zero emission vehicles which do not use fossil fuels such as electric vehicles have attracted attention by government and both industry and academia at developed countries. In the market, electric vehicles are being selected from more and more consumers because of technological advances and policy support. Recently another zero emission vehicle, hydrogen fuel cell vehicle, is drawing attention and is expected to become deployed widely. This paper reviews technology, current status and global trends of zero emission vehicle. The economical analysis of zero emission vehicles are also presented.

Development of Air Supply System for Fuel Cell Electric Bus (연료전지 버스용 공기공급시스템 개발)

  • Kim, Woo-June;Park, Chang-Ho;Cho, Kyung-Seok;Oh, Chang-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.561-564
    • /
    • 2007
  • FCEV uses electric energy which generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supply Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8$ % of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the performance of FCEV. This study will present the development process of an air blower and its consisting parts respectively.

  • PDF