• Title/Summary/Keyword: Hydrogen

Search Result 12,216, Processing Time 0.106 seconds

Analysis of Hydrogen Accident in Korea (국내 수소사고사례 분석)

  • Jo, Young-Do;Tak, Song-Su;Choi, Kyoung-Suhk;Lee, Jong Rark;Park, Kyo-Shik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.82-87
    • /
    • 2004
  • Hydrogen is considered to be the most important future energy carrier in many applications reducing greenhouse gas emissions significantly. To be applicable as energy carrier the safety issues associated with hydrogen applications needs to be investigated and fully understood. In order to analyze the risks associated with hydrogen applications, accidents associated with hydrogen in Korea from 1963 to 2002 have been analysed in this work. From analysis of accidents, we propose the necessity of research on hydrogen releases, dispersion in air, and explosion due to high hazardous of hydrogen.

Strategic Niche Management for Enhancing Feasibility of the Hydrogen Economy (수소경제 실현가능성 제고를 위한 전략적 니치 관리)

  • Park, Sang-Ook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.274-282
    • /
    • 2011
  • This paper overviews the concept of the strategic niche management, which emphasises the social aspects of new technologies and calls for relevant government policies for socio-technical transition. Hydrogen energy technologies remain in the niche level, thus the SNM perspective is appropriate to be applied. The reason why, and the way how to see hydrogen as a socio-technical niche are discussed, followed by an analytic argument on hydrogen policies and their SNM characteristics. Final part of the paper deals the design of the socio-technical experiment. It is expected that this paper would contribute to not only policy development but also improving understandings on the socio-technical nature of hydrogen energy of hydrogen community.

A Review of Corrosion and Hydrogen Diffusion Behaviors of High Strength Pipe Steel in Sour Environment

  • Kim, Sung Jin;Kim, Kyoo Young
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.13-20
    • /
    • 2014
  • A brief overview is given of the corrosion and hydrogen diffusion behaviors of high strength pipe steel in sour environment. Firstly, hydrogen adsorption and diffusion mechanism of the pipe steel is introduced. Secondly, the effect of iron sulfide film precipitated as a result of the corrosion reaction on the steel surface on hydrogen reduction reaction and subsequent hydrogen permeation through the steel is discussed. Moreover, the hydrogen diffusion behavior of the pipe steel under tensile stress in both elastic and plastic ranges is reviewed based on a number of experimental permeation data and theoretical models describing the hydrogen diffusion and trapping phenomena in the steel. It is hoped that this paper will result in significant academic contributions in the field of corrosion and hydrogen related problems of the pipe steel used in sour environment.

Modeling of Hydrogen Recirculation System for Fuel Cell Vehicle (수소 연료전지차의 재순환시스템 모델링 연구)

  • Kim, Jae-Hoon;Noh, Young-Gyu;Jeon, Ui-Sik;Lee, Jong-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.481-487
    • /
    • 2011
  • A fuel cell vehicle using a polymer electrolyte membrane fuel cell (PEM FC) as power source produces electric power by consuming the fuel, hydrogen. The unconsumed hydrogen is recirculated and reused to gain higer stack efficiency and to maintain the humidity in the anode side of the stack. So it is needed considering fuel efficiency to recirculated hydrogen. In this study, the indirect hydrogen recirculation flow rate measurement method for fuel cell vehicle is presented. By modeling of a convergent nozzle ejector and a hydrogen recirculation blower for the hydrogen recirculation of a PEM FC, the hydrogen recirculation flow rate was calculated by means of the mass balance and heat balance at Anode In/Outlet.

Technology Trend of Hydrogen Storage by the Patent Analysis (국내외 수소저장기술 특허 분석을 통한 기술개발 동향)

  • Kim, Jung-Wun;Kim, Tea-Wook;Ryu, Jae-Woong;Jang, Ki-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.191-197
    • /
    • 2012
  • The hydrogen storage is one of the key technologies to achieve the successful hydrogen economy and a chain to connect hydrogen production to its utilization. In this paper, characteristics and strong candidates of hydrogen storage technologies were analyzed from the objective information of patents. Also, the hydrogen storage technology trends and gaps were assessed using statistical or qualitative analysis. In this study the patents applied in Korea, Japan, US and EU from 10 or 20 years ago to 2011 were analyzed. The result of patent analysis could be used for developing or searching for promising technology of the hydrogen storage.

A NUMERICAL SIMULATION OF HYDROGEN DIFFUSION FOR THE HYDROGEN LEAKAGE FROM FCV IN UNDERGROUND PARKING LOT (지하주차장 내 수소연료 자동차의 수소 누설로 인한 수소 확산에 대한 수치해석 연구)

  • Choi, J.;Hur, N.;Lee, E.D.;Lee, K.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.477-482
    • /
    • 2011
  • In the present study, the diffusion process of hydrogen leaking from a FCV (Fuel Cell Vehicle) in an underground parking lot was analyzed by numerical simulations in order to assess the risk of a leakage accident. The temporal and spatial changes of the hydrogen concentration as well as the flammable region in the parking lot were predicted numerically. The effects of the leakage flow rate and an additional ventilation fan were investigated to evaluate the ventilation performance in the parking lot to relieve the accumulation of the leaked hydrogen gas. The present numerical analysis can provide useful information such as the distribution of the leaked hydrogen concentration for safety of various hydrogen applications.

  • PDF

Theoretical Modeling of the Kinetics of External Hydrogen Embrittlement (수소 취성 속도에 관한 이론적 모델링)

  • Han, Jeong-Seb;Macdonald, Digby D.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.324-333
    • /
    • 2005
  • The kinetics of external hydrogen embrittlememt is considered. The equation of the crack growth rate (CGR) is derived from modification of the model developed by Wilkinson and Vitek. After calculation of hydrogen pressure build-up in the void, the effect of the internal hydrogen pressure on the void growth is added. The CGR is expressed by two terms. One is the term dependent on the critical stress, which is exactly same as Wilkinson and Vitek. The other is term dependent on the pressure of the hydrogen in void.

Electrical Characteristic Change of Al/Pd Film by Hydrogen Gas (수소 기체에 의한 Al/Pd 박막의 전기 특성 변화)

  • Cho, Young-Sin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.386-390
    • /
    • 2005
  • Al film(135.5 nm thick) with Pd film(39.6 nm thick) on the top of it was made by thermal evaporation method. Electrical resistance change due to hydrogen absorption and desorption was measured by four point measurement method. The sample was activated by hydrogen absorption and desorption cycling at room temp. Hydrogen was introduced into the film by increasing hydrogen gas pressure step by step up to 640 torr at room temp. The resistance change ratio was decreased to 12 % with increasing hydrogen pressure in contrast to normal metal behavior. This strange tendency was not understood yet. Further study is needed to find out the mechanism of hydrogen absorption in Al in Al/Pd film.

Characteristics of Byproducts during Anaerobic Hydrogen Fermentation Using Protein (단백질을 이용한 혐기성 수소 발효시 부산물 발생 특성 평가)

  • LEE, CHAE-YOUNG;HAN, SUN-KEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.427-433
    • /
    • 2018
  • This study was performed to evaluate initial pH and substrate concentration on hydrogen fermentation of protein. The optimum initial pH and substrate concentration of hydrogen fermentation using protein was 8.0 and 1.0 g peptone/L, respectively. The maximum hydrogen yield at initial pH 8.0 and 1.0 g peptone/L was $19.2{\pm}0.8mL\;H_2/g$ peptone. As results of VFAs analysis, percentages of valerate was similar to hydrogen yield. Also, C. stickalandii, which was hydrogen and valerate producing bacteria, was dominated.

Review : Hydrogen Storage in Solid State (고체상 수소저장기술 동향)

  • Lee, Jun-Wung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1153-1171
    • /
    • 2010
  • Hydrogen is the most abundant element in the universe. Although hydrogen can produce three times more energy than gasoline and seven times than coal, the most challenging problem in utilizing hydrogen as energy carrier is its storage problem. In contrast to the liquid hydrocarbon, hydrogen can not be stored or transported easily and safely because of its extremely low boiling point(21K). Recently scientists have made a tremendous achievement in storing hydrogen capacity in solid state materials such as carbon based and metal organic frameworks materials as well as metal hydrides. In this review the author reviewed the status of the hydrogen storage technologies in solid state, the advantages and disadvantages in each category of materials and the future prospects of hydrogen storage.