• Title/Summary/Keyword: Hydrogel implant

Search Result 8, Processing Time 0.02 seconds

Chest Wall Lipogranuloma after Hydrogel Implant Rupture: Case Report

  • Park, So Yoon;Han, Boo-Kyung;Cho, Eun Yoon;Bang, Sa-Ik
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.191-195
    • /
    • 2015
  • We present a 53-year-old woman with a large chest wall mass in the interpectoral space, which was eventually confirmed as a lipogranuloma resulting from hydrogel implant rupture. Ultrasonography (US) showed reduced implant volume with surrounding peri-implant fluid collection, suggesting the possibility of implant rupture. A heterogeneously hypoechoic mass was found between the pectoralis major and minor muscles adjacent to the ruptured implant. On magnetic resonance imaging (MRI), there was a large mass in the left interpectoral space of the upper inner chest wall. The mass showed slightly high signal intensity (SI) on pre-contrast T1-weighted image (WI) with mixed iso and high SI on T2-WI. The signal of the mass was suppressed using the water suppression technique but not with the fat suppression technique on T2-WI. The mass showed diffuse enhancement upon contrast enhancement. The enhancing kinetics showed persistent enhancement pattern. US-guided core needle biopsy revealed a lipogranuloma and removal confirmed a ruptured PIP hydrogel implant.

Synthetic Hydrogel as an Implant Material with Enhanced Biocompatibility and Biostability (생체적합성 및 생체안정성이 향상된 이식용 합성 수화젤)

  • 최진현;박보형;한영아;김수정;임정옥
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.86-91
    • /
    • 2004
  • Hydrogels with enhanced biocompatibility and biostability were prepared by copolymerization of 2-hydroxyethyl methacrylate (HEMA) and sodium methacrylate (SMA) at high monomer concentration to replace a sponge which has limited applications as an implant material. It was found that incorporation of SMA moiety suppressed cytotoxicity. P(HEMA-co-SMA) hydrogel prepared at SMA feed ratio of 0.05 showed minimal cytotoxicity as compared with a normal cell culture plate. The adhesion and the spreading of cells were preferred on the surface of the hydrogel prepared with SMA feed ratio of 0.01. On the other hand, the hydrogel prepared with SMA feed ratio of 0.05 showed lower cell adhesion. Histological findings revealed no evidence of significant foreign body reaction in the tissues around the copolymer hydrogels. Conclusively, it is suggested that the hydrogels prepared by copolymerization of HEMA and SMA at high monomer concentration are strong candidates for an implant material with excellent biocompatibility and biostability.

Porous Hyaluronic Acid-Gelatin Loaded Sponge Biphasic Calcium Phosphate Scaffold for Bone Implant Application

  • Nguyen, Thuy Ba Linh;Kim, Shin-Woo;Min, Young-Ki;Yang, Hun-Mo;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.35.2-35.2
    • /
    • 2011
  • In this study, hyaluronic acid (HyA) - Gelatin (Gel) hydrogels were prepared at ratio of 15:85 with the goal of obtaining a high uniform porosity and porous biocompatibility scaffold for bone tissue engineering applications. In order to develop a proper scaffold for bone implant application, a HyA-Gel hydrogel loaded in sponge Biphasic Calcium Phosphate (BCP) was prepared. To assay the cytocompatibility and cell behavior on the HyA-Gel hydrogel and HyA-Gel/BCP scaffold, cell attachment and spreading of MSCs seeded on the scaffolds were studied. An invivo study was performed for HyA-Gel/BCP scaffolds after 1 and 3 months implantation. Our results provide a novel and simple method to obtain an adequate scaffold for osteoblast cells and indicate that HyA-Gel hydrogel and HyA-Gel/BCP scaffold could be a good candidate for bone tissue engineering scaffolds.

  • PDF

Photo-crosslinked gelatin methacryloyl hydrogel strengthened with calcium phosphate-based nanoparticles for early healing of rabbit calvarial defects

  • Da-Na Lee;Jin-Young Park;Young-Wook Seo;Xiang Jin;Jongmin Hong;Amitava Bhattacharyya;Insup Noh;Seong-Ho Choi
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.5
    • /
    • pp.321-335
    • /
    • 2023
  • Purpose: The aim of this study was to investigate the efficacy of photo-crosslinked gelatin methacryloyl (GelMa) hydrogel containing calcium phosphate nanoparticles (CNp) when applying different fabrication methods for bone regeneration. Methods: Four circular defects were created in the calvaria of 10 rabbits. Each defect was randomly allocated to the following study groups: 1) the sham control group, 2) the GelMa group (defect filled with crosslinked GelMa hydrogel), 3) the CNp-GelMa group (GelMa hydrogel crosslinked with nanoparticles), and 4) the CNp+GelMa group (crosslinked GelMa loaded with nanoparticles). At 2, 4, and 8 weeks, samples were harvested, and histological and micro-computed tomography analyses were performed. Results: Histomorphometric analysis showed that the CNp-GelMa and CNp+GelMa groups at 2 weeks had significantly greater total augmented areas than the control group (P<0.05). The greatest new bone area was observed in the CNp-GelMa group, but without statistical significance (P>0.05). Crosslinked GelMa hydrogel with nanoparticles exhibited good biocompatibility with a minimal inflammatory reaction. Conclusions: There was no difference in the efficacy of bone regeneration according to the synthesized method of photo-crosslinked GelMa hydrogel with nanoparticles. However, these materials could remain within a bone defect up to 2 weeks and showed good biocompatibility with little inflammatory response. Further improvement in mechanical properties and resistance to enzymatic degradation would be needed for the clinical application.

Physicochemical, Antibacterial Properties, and Compatibility of ZnO-NP/Chitosan/β-Glycerophosphate Composite Hydrogels

  • Huang, Pingping;Su, Wen;Han, Rui;Lin, Hao;Yang, Jing;Xu, Libin;Ma, Lei
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.522-530
    • /
    • 2022
  • In this study we aimed to develop novel ZnO-NP/chitosan/β-glycerophosphate (ZnO-NP/CS/β-GP) antibacterial hydrogels for biomedical applications. According to the mass fraction ratio of ZnO-NPs to chitosan, mixtures of 1, 3, and 5% ZnO-NPs/CS/β-GP were prepared. Using the test-tube inversion method, scanning electron microscopy and Fourier-transform infrared spectroscopy, the influence of ZnO-NPs on gelation time, chemical composition, and cross-sectional microstructures were evaluated. Adding ZnO-NPs significantly improved the hydrogel's antibacterial activity as determined by bacteriostatic zone and colony counting. The hydrogel's bacteriostatic mechanism was investigated using live/dead fluorescent staining and scanning electron microscopy. In addition, crystal violet staining and MTT assay demonstrated that ZnO-NPs/CS/β-GP exhibited good antibacterial activity in inhibiting the formation of biofilms and eradicating existing biofilms. CCK-8 and live/dead cell staining methods revealed that the cell viability of gingival fibroblasts (L929) cocultured with hydrogel in each group was above 90% after 24, 48, and 72 h. These results suggest that ZnO-NPs improve the temperature sensitivity and bacteriostatic performance of chitosan/β-glycerophosphate (CS/β-GP), which could be injected into the periodontal pocket in solution form and quickly transformed into hydrogel adhesion on the gingiva, allowing for a straightforward and convenient procedure. In conclusion, ZnO-NP/CS/β-GP thermosensitive hydrogels could be expected to be utilized as adjuvant drugs for clinical prevention and treatment of peri-implant inflammation.

Advances in the design of macroporous polymer scaffolds for potential applications in dentistry

  • Bencherif, Sidi A.;Braschler, Thomas M.;Renaud, Philippe
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.6
    • /
    • pp.251-261
    • /
    • 2013
  • A paradigm shift is taking place in medicine and dentistry from using synthetic implants and tissue grafts to a tissue engineering approach that uses degradable porous three-dimensional (3D) material hydrogels integrated with cells and bioactive factors to regenerate tissues such as dental bone and other oral tissues. Hydrogels have been established as a biomaterial of choice for many years, as they offer diverse properties that make them ideal in regenerative medicine, including dental applications. Being highly biocompatible and similar to native extracellular matrix, hydrogels have emerged as ideal candidates in the design of 3D scaffolds for tissue regeneration and drug delivery applications. However, precise control over hydrogel properties, such as porosity, pore size, and pore interconnectivity, remains a challenge. Traditional techniques for creating conventional crosslinked polymers have demonstrated limited success in the formation of hydrogels with large pore size, thus limiting cellular infiltration, tissue ingrowth, vascularization, and matrix mineralization (in the case of bone) of tissue-engineered constructs. Emerging technologies have demonstrated the ability to control microarchitectural features in hydrogels such as the creation of large pore size, porosity, and pore interconnectivity, thus allowing the creation of engineered hydrogel scaffolds with a structure and function closely mimicking native tissues. In this review, we explore the various technologies available for the preparation of macroporous scaffolds and their potential applications.

A comprehensive review of techniques for biofunctionalization of titanium

  • Hanawa, Takao
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.6
    • /
    • pp.263-272
    • /
    • 2011
  • A number of surface modification techniques using immobilization of biofunctional molecules of Titanium (Ti) for dental implants as well as surface properties of Ti and Ti alloys have been developed. The method using passive surface oxide film on titanium takes advantage of the fact that the surface film on Ti consists mainly of amorphous or low-crystalline and nonstoichiometric $TiO_2$. In another method, the reconstruction of passive films, calcium phosphate naturally forms on Ti and its alloys, which is characteristic of Ti. A third method uses the surface active hydroxyl group. The oxide surface immediately reacts with water molecules and hydroxyl groups are formed. The hydroxyl groups dissociate in aqueous solutions and show acidic and basic properties. Several additional methods are also possible, including surface modification techniques, immobilization of poly(ethylene glycol), and immobilization of biomolecules such as bone morphogenetic protein, peptide, collagen, hydrogel, and gelatin.

Oral tissue response to soft tissue expanders prior to bone augmentation: in vitro analysis and histological study in dogs

  • Yoo, Jung Min;Amara, Heithem Ben;Kim, Min Kyoung;Song, Ju Dong;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.3
    • /
    • pp.152-163
    • /
    • 2018
  • Purpose: To determine whether the swelling and mechanical properties of osmotic self-inflating expanders allow or not the induction of intraoral soft tissue expansion in dogs. Methods: Three different volumes (0.15, 0.25, and 0.42 mL; referred to respectively as the S, M, and L groups) of soft tissue expanders (STEs) consisting of a hydrogel core coated with a silicone-perforated membrane were investigated in vitro to assess their swelling behavior (volume swelling ratio) and mechanical properties (tensile strength, tensile strain). For in vivo investigations, the STEs were subperiosteally inserted for 4 weeks in dogs (n=5). Soft tissue expansion was clinically monitored. Histological analyses included the examination of alveolar bone underneath the expanders and thickness measurements of the surrounding fibrous capsule. Results: The volume swelling ratio of all STEs did not exceed 5.2. In tensile mode, the highest mean strain was registered for the L group ($98.03{\pm}0.3g/cm$), whereas the lowest mean value was obtained in the S group ($81.3{\pm}0.1g/cm$), which was a statistically significant difference (P<0.05). In addition, the S and L groups were significantly different in terms of tensile strength ($1.5{\pm}0.1g/cm$ for the S group and $2.2{\pm}0.1g/cm$ for the L group, P<0.05). Clinical monitoring showed successful dilatation of the soft tissues without signs of inflammation up to 28 days. The STEs remained volumetrically stable, with a mean diameter in vivo of 6.98 mm, close to the in vitro post-expansion findings (6.69 mm). Significant histological effects included highly vascularized collagen-rich fibrous encapsulation of the STEs, with a mean thickness of $0.67{\pm}0.12mm$. The bone reaction consisted of resorption underneath the STEs, while apposition was observed at their edges. Conclusions: The swelling and mechanical properties of the STEs enabled clinically successful soft tissue expansion. A tissue reaction consisting of fibrous capsule formation and bone loss were the main histological events.