• Title/Summary/Keyword: Hydrodynamic model

Search Result 1,100, Processing Time 0.029 seconds

A Coupled Three-Dimensional Hydrodynamic and Water Quality Modeling of Yongdam Reservoir using ELCOM-CAEDYM (ELCOM-CAEDYM을 이용한 용담호 3차원 수리-수질 연동 모델링)

  • Chung, Se Woong;Lee, Jung Hyun;Ryu, In Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.413-424
    • /
    • 2011
  • The study was aimed to evaluate the applicability of a three-dimensional (3D) hydrodynamic and water quality model, ELCOM-CAEDYM for Yongdam Reservoir, Korea. The model was applied for the simulations of hydrodynamics, thermal stratification processes, stream density flow propagation, and water quality parameters including dissolved oxygen, nutrients, organic materials, and algal biomass (chl-a) for the period of June to December, 2006. The field data observed at four monitoring stations (ST1~ST4) within the reservoir were used to validate the models performance. The model showed reasonable performance nevertheless low frequency boundary forcing data were provided, and well replicated the physical, chemical, and biological processes of the system. Simulated spatial and temporal variations of water temperature, nutrients, and chl-a concentrations were moderately consistent with the field observations. In particular, the model rationally reproduced the succession of different algal species; i.e., diatom dominant during spring and early summer, after then cyanobacteria dominant under warm and stratified conditions. ELCOM-CAEDYM is recommendable as a suitable coupled 3D hydrodynamic and water quality model that can be effectively used for the advanced water quality management of large stratified reservoirs in Korea.

Dynamic Behavior and Lubrication Characteristics of a Reciprocating Compressor Crankshaft by n Finite Bearing Model (유한 베어링 모델링을 이용한 왕복동형 압축기 크랭크축의 동적 거동 및 윤활특성 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.402-410
    • /
    • 2002
  • In this study, a hydrodynamic analysis of the reciprocating compressor crankshaft considering a finite bearing modelling of the journal bearings used in small refrigeration compressors is performed. In the problem formulation of the compression mechanism dynamics, all corresponding hydrodynamic forces and moments are considered using the finite bearing analysis in order to determine the crankshaft trajectory at each step. The solution of the Reynolds' equation is determined numerically using a finite difference method and a Newton-Raphson procedure was employed in solving the dynamic equations of the crankshaft. The crankshaft orbits fur the finite bearing model and short bearing theory were used to compare the effect of the hydrodynamic farces of the journal bearings on the dynamic and lubrication characteristics of the crankshaft-journal bearing system. Results show that the finite bearing model for the journal bearings must be considered in calculating for the accurate dynamic characteristics of the reciprocating compressor crankshaft.

Three-Dimensional Water Quality Modeling of Chinhae Bay (진해만의 3차원 수질 모델링)

  • 김차겸;이필용
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • A three-dimensional hydrodynamic-ecosystem model was developed and applied to Chinhae Bay which is located in the southeastern sea of Korea. The model includes a three-dimensional hydrodynamic model and an eutrophication model, and the model operates on the same grid system. The agreement between predicted and measured results is reasonably encouraging. The concentrations of the calculated COD, DIN and DIP are appeared to be very high due to the phytoplankton production and the wastewater input in the northern part of Chinhae Bay. Anoxic and hypoxic water masses in the bottom layer occur in the northern part of the bay due to the excess loading of wastewater and strong stratification, and in the western inner part of the bay due to high oxygen consumption in densely populated aquaculturing facilities. DO concentration contours show parallel to the bay entrance line, which means the importance of supplying DO by physical process from the mouth of the bay. Although both the hydrodynamic and biochemical processes play important role to form the hypoxic waters in the bottom of the inner bay, it is suggested that the hydrodynamic conditions such as the vertical and the horizontal eddy diffusivity are primarily important factors.

  • PDF

A Sensitivity Analysis on Numerical Grid Size of a Three-Dimensional Hydrodynamic and Water Quality Model (EFDC) for the Saemangeum Reservoir (새만금호 3차원 수리.수질모델(EFDC)의 수치격자 민감도 분석)

  • Jeon, Ji Hye;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.26-37
    • /
    • 2012
  • Multi-dimensional hydrodynamic and water quality models are widely used to simulate the physical and biogeochemical processes in the surface water systems such as reservoirs and estuaries. Most of the models have adopted the Eulerian grid modeling framework, mainly because it can reasonably simulate physical dynamics and chemical species concentrations throughout the entire model domain. Determining the optimum grid cell size is important when using the Eulerian grid-based three-dimensional water quality models because the characteristics of species are assumed uniform in each of the grid cells and chemical species are represented by concentration (mass per volume). The objective of this study was to examine the effect of grid-size of a three dimensional hydrodynamic and water quality model (EFDC) on hydrodynamics and mass transport in the Saemangeum Reservoir. Three grid resolutions, respectively representing coarse (CG), medium (MG), and fine (FG) grid cell sizes, were used for a sensitivity analysis. The simulation results of numerical tracer showed that the grid resolution affects on the flow path, mass transport, and mixing zone of upstream inflow, and results in a bias of temporal and spatial distribution of the tracer. With the CG, in particular, the model overestimates diffusion in the mixing zone, and fails to identify the gradient of concentrations between the inflow and the ambient water.

An Experimental Study on Ship-Bank Hydrodynamic Interaction Forces (선박에 작용하는 측벽영향에 관한 실험적 연구)

  • Lee, Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.37 no.3
    • /
    • pp.251-256
    • /
    • 2013
  • This paper is mainly concerned with the ship-bank interaction by model test. The experiments for the characteristics of hydrodynamic interaction forces and moments between vessel and bank with a mound were carried out in the seakeeping and maneuvering basin. A series of tests were carried out with ship model in parallel course along a vertical sidewall with a mound with varying lateral spacing between model ship and sidewall, length of sidewall and water depth. From the experimental results, it indicated that the hydrodynamic interaction effects increase as length of sidewall with a mound increases. Furthermore, for lateral spacing less than about 0.2L between vessel and bank, it can be concluded that the bank effects increase largely as the lateral spacing between vessel and bank decreases. However, for spacing between vessel and bank more than about 0.3L, the interaction effects increase slowly as lateral spacing decreases. Also, for the water depth to draft ratio(h/d) less than about 1.5, the hydrodynamic interaction effects increase dramatically as h/d decreases.

Hydrodynamic Lubrication Model for Chemical Mechanical Planarization (유체윤활을 고려한 화학기계적 연마 공정에서의 연마대상과 패드 사이의 유동장 해석)

  • 김기현;오수익;전병희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.207-210
    • /
    • 2003
  • The chemical mechanical planarization (CMP) process is a method of planarizing semiconductor wafers with a high degree of success. However, fundamental mechanisms of the process are not fully understood. Several theoretical analyses have been introduced, which are focused on kinematics, von Mises stress distributions and hydrodynamic lubrication aspects. This paper is concerned with hydrodynamic lubrication theory as the chemical mechanical planarization model; the three-dimensional Reynolds equation is applied to predict slurry film thickness and pressure distributions between the pad and the wafer. This paper classifies geometry of wafer into 3 types and focuses on the differences between them.

  • PDF

ADAPTIVE NOISE CANCELLATION APPLIED IN HYDRODYNAMIC FIELD

  • Liu, Yuanheng;Ma, Ning;Li, Tongyu
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.802-805
    • /
    • 1994
  • There are strong ocean wave interference with big amplitude very low frenqencies are similar to the ship's hydrodynamic signals. To detect ship's hydrodynamic field will be faced various natural hydrodynamic interferences which are radom and the prior knowlege of which are not know. This paper proposes to use the adaptive noise cancelling principle and used the model of adaptive wave canceller to eliminate the ocean wave interfrence and detect the ship's hydrodynamic signals. Computer simulation results shown that signal to noise ratio can be raised from several to ten times. It shows the fact that this mathod can detect the ship's hydrodynamic signals from the strong ocean wave interferences while it is difficult for the old methods.

  • PDF

Elasto-Hydrodynamic Lubrication Characteristics of Bump Foil Bearings (범프포일베어링의 탄성유체윤활 특성)

  • Kim, Young-Cheol;Lee, Dong-Hyun;Kim, Kyung-Woong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.98-103
    • /
    • 2004
  • This paper presents modeling and simulation of the bump foil bearings with consideration of the elastic behavior of the foil and gas compressibility. Heshmat had originally introduced the simple compliance model to estimate the EHL(elasto-hydrodynamic lubrication) performance. But this approach can not consider the deflection of top foil at the edge of bearing, so model is insufficient to analyze in case that the eccentricity ratio is greater than I. So the top foil is considered as a simple beam model supported by linear spring elements, and the bump foil deflection can be simple compliance model. The EHL calculations are performed for convention rigid type, classical foil type, variable pitch type and double bump type toil bearings. This paper presents that 2nd or 3rd generation bearings have excellent performance in every speeds.

  • PDF

Study on the Development of the Maneuvering Mathematical Model Considering the Large Angle Motion of Submarine

  • Jae Hyuk Choi;Sungwook Lee;Jinhyeong Ahn
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.81-88
    • /
    • 2023
  • Maneuverability is a crucial factor for the safety and success of submarine missions. This paper introduces a mathematical model that considers the large drift and angle of attack motions of submarines. Various computational fluid dynamics (CFD) simulations were performed to adapt Karasuno's fishery vessel maneuvering mathematical model to submarines. The study also presents the procedure for obtaining the physics-based hydrodynamic coefficients proposed by Karasuno through CFD calculations. Based on these coefficients, the reconstructed forces and moments were compared with those obtained from CFD and to the hydrodynamic derivatives expressed by a Taylor expansion. The study also discusses the mathematical maneuvering model that accounts for the large drift angles and angles of attack of submarines. The comparison results showed that the proposed maneuvering mathematical model based on modified Karasno's model could cover a large range of motions, including horizontal motion and vertical motions. In particular, the results show that the physics-based mathematical maneuvering model can represent the forces and moments acting on the submarine hull during large drift and angle of attack motions. The proposed mathematical model based on the Karasuno model could obtain more accurate results than the Taylor third-order approximation-based mathematical model in estimating the hydrodynamic forces acting on submarines during large drift and angle of attack motions.

A Model Study of Hypoxia in the Rappahannock Estuary, Verginia

  • Park, Kyeong
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.108-109
    • /
    • 1995
  • Hypoxia has persisted during summer in the bottom water of the lower portion of the Rappahannock Estuary, a western shore tributary of Chesapeake Bay. A laterally integrated two-dimensional, real-time model, consisting of linked hydrodynamic and water quality models, was developed to study the contributing processes for hypoxia. The hydrodynamic model gives the information of physical transport processes, both advective and diffusive, to the water quality model, which simulates the spatial and temporal distributions of eight water quality state variables. (omitted)

  • PDF