DOI QR코드

DOI QR Code

A Coupled Three-Dimensional Hydrodynamic and Water Quality Modeling of Yongdam Reservoir using ELCOM-CAEDYM

ELCOM-CAEDYM을 이용한 용담호 3차원 수리-수질 연동 모델링

  • Chung, Se Woong (Department of Environmental Engineering, Chungbuk National University) ;
  • Lee, Jung Hyun (Department of Environmental Engineering, Chungbuk National University) ;
  • Ryu, In Gu (National Institude of Environmental Research)
  • Received : 2011.02.24
  • Accepted : 2011.06.08
  • Published : 2011.07.30

Abstract

The study was aimed to evaluate the applicability of a three-dimensional (3D) hydrodynamic and water quality model, ELCOM-CAEDYM for Yongdam Reservoir, Korea. The model was applied for the simulations of hydrodynamics, thermal stratification processes, stream density flow propagation, and water quality parameters including dissolved oxygen, nutrients, organic materials, and algal biomass (chl-a) for the period of June to December, 2006. The field data observed at four monitoring stations (ST1~ST4) within the reservoir were used to validate the models performance. The model showed reasonable performance nevertheless low frequency boundary forcing data were provided, and well replicated the physical, chemical, and biological processes of the system. Simulated spatial and temporal variations of water temperature, nutrients, and chl-a concentrations were moderately consistent with the field observations. In particular, the model rationally reproduced the succession of different algal species; i.e., diatom dominant during spring and early summer, after then cyanobacteria dominant under warm and stratified conditions. ELCOM-CAEDYM is recommendable as a suitable coupled 3D hydrodynamic and water quality model that can be effectively used for the advanced water quality management of large stratified reservoirs in Korea.

Keywords

References

  1. 국립환경과학원(2008). 수계별 호소환경 및 생태조사.
  2. 김범철, 박주현, 허우명, 임병진, 황길순, 최광순, 최종수 (2001). 국내 주요 호수의 육수학적 조사(4): 주암호. Korean J. Limnol., 34(1), pp. 30-44.
  3. 김윤희, 김범철, 최광순, 서동일(2001). 2차원 수리수질모델을 이용한 소양호 수온성층현상과 홍수기 밀도류 이동 현상의 모델링. 상하수도학회지, 15(1), pp. 40-49.
  4. 나은혜, 박석순(2005). 팔당호 수온, 유속, 체류시간의 시.공간적 분포 및 유입지류 흐름에 관한 3차원 모델 연구. 대한환경공학회지, 27(9), pp. 978-988.
  5. 서동일(1998). 대청호의 성층현상에 의한 부양양화 특성과 수질관리 방안에 관한 연구. 대한환경공학회지, 20(9), pp. 1219-1234.
  6. 서동일, 최재훈, 이은형, 이혜근(2001). EUTRO5를 이용한 시 화호 수질 모델 보정 및 검증. 대한환경공학회지, 23(1), pp. 131-139.
  7. 서동일, 이정우(2005). 3차원 수리 모델 EFDC(Environmental Fluid Dynamics Code)를 이용한 준설에 의한 부유사 확산영향에 관한 연구. 공동춘계학술발표회 논문집, 한국물환경학회.대한상하수도학회, pp. 360-363.
  8. 이상욱, 김정곤, 노준우, 고익환(2007). CE-QUAL-W2 모델을 이용한 임하호 선택배제 시설의 효과분석. 수질보전 한국물환경학회지, 23(2), pp. 228-235.
  9. 이은형, 서동일(2002). 용담댐의 영향분석을 위한 금강의 수질 모델링. 한국수자원학회 논문집, 35(5), pp. 525-539.
  10. 정세웅(2004). 성층화된 저수지로 유입하는 탁류의 공간분포 특성 및 연직 2차원 모델링. 대한환경공학회지, 26(9), pp. 970-978.
  11. 정세웅, 박재호, 김유경, 윤성완(2007). 대청호 부영양화 모의를 위한 CE-QUAL-W2 모델의 적용. 수질보전 한국물환경학회지, 23(1), pp. 52-63.
  12. 정세웅, 오정국(2006). 대청호 상류 하천에서 강우시 하천 수온 변동 특성 및 예측 모형 개발. 한국수자원학회논문집, 39(1), pp. 79-88.
  13. 정세웅, 이흥수, 정용락(2008). 입자크기 분포를 고려한 부력침강 저수지 밀도류의 탁도 모델링. 수질보전 한국물환경학회지, 24(3), pp. 365-377.
  14. 정세웅, 이흥수, 최정규, 류인구(2009). 3차원 ELCOM 모형을 이용한 대청호 수온성층 모의. 수질보전 한국물환경학회지, 25(6), pp. 922-934.
  15. 한국수자원공사(2007). 댐운영 실무편람
  16. Ambrose, R. B., Wool, T. A., and Martin, J. L. (1993). The Water Quality Analysis Simulation Program, WASP5. U.S. EPA.
  17. Cerco, C. F. and Cole, T. (1993). Three dimensional eutrophication model of Chesapeake Bay. Journal of Environmental Engineering, 119(6), pp. 1006-1022. https://doi.org/10.1061/(ASCE)0733-9372(1993)119:6(1006)
  18. Chapra, S. C. (1997). Surface Water-Quality Modeling, McGraw-Hill Inc., New York.
  19. Chung, S. W., Lee, H. S., and Jung, Y. R. (2008). The effect of hydrodynamic flow regimes on the algal bloom in a Monomictic Reservoir. Water Science and Technology, 58(6), pp. 1291-1298. https://doi.org/10.2166/wst.2008.482
  20. Cole, T. M. and Buchak, E. M. (1995). CE-QUAL-W2: A Two-dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, User's Manual. U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS.
  21. Droop, M. R. (1974). The nutrient status of algal cells in continuous culture. J. Mar. Biol. Assoc., UK 54, pp. 825-855.
  22. Dyson, M., Bergkamp, G., and Scanlon, J. (2003). Flow. The Essentials of Environmental Flows. IUCN, Gland, Switzerland and Cambridge, UK.
  23. Hamrick, J. M. (1992). A Three Dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects. Special report, The college of William and Mary, Virginia institute of marine science, Glouceslter point, VA.
  24. Hipsey, M. R., Romero, J. R., Antenucci, J. P., and Hamilton, D. (2006). Computational Aquatic Ecosystem Dynamics Model: CAEDYM v2.3 Science Manual, Centre for Water Research, University of Western Australia.
  25. Hodges, B. R. and Dallimore, C. (2006). Estuary, Lake and Coastal Ocean Model: ELCOM. Users Guide, Centre for Water Research, University of Western Australia technical Publication.
  26. Riley, J. P. and Skirrow, G. (1974). Chemical Oceanography. Academic Press, New York.
  27. Robson, B. J. and Hamilton, D. P. (2004). Three-dimensional modelling of a Microcystis bloom event in the Swan River estuary, Western Australia. Ecological Modelling, 174, pp. 203-222. https://doi.org/10.1016/j.ecolmodel.2004.01.006
  28. Tharme, R. E. (2003). A global perspective on environmental flow assessment: emerging trend in the development and application of environmental flow methodologies for rivers. River Res. Applic., 19, pp. 397-441. https://doi.org/10.1002/rra.736
  29. Wallace, B. B. and Hamilton, D. P. (2000). Simulation of water-bloom formation in the cyanobacterium Microcystis aeruginosa. Journal of Plankton Research, 22(6), pp. 1127-1138. https://doi.org/10.1093/plankt/22.6.1127
  30. Walsby, A. E., Hayes, P. K., Boje, R., and Stal, L. J. (1997). The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytol., 136, pp. 407-417. https://doi.org/10.1046/j.1469-8137.1997.00754.x
  31. Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97, pp. 7373-7382. https://doi.org/10.1029/92JC00188