• 제목/요약/키워드: Hydrodynamic coupling

검색결과 82건 처리시간 0.025초

주상체(柱狀體)의 운동(運動) 및 표류력(漂流力)에 미치는 해류(海流)의 영향(影響) (Current Effect on the Motion and Drift Force of Cylinders Floating in Waves)

  • 이세창
    • 대한조선학회지
    • /
    • 제23권4호
    • /
    • pp.25-34
    • /
    • 1986
  • A two-dimensional linear method has been developed for the motion and the second-order steady force arising from the hydrodynamic coupling between waves and currents in the presence of a body of arbitrary shape. Interaction between the incident wave and current in the absence of the body lies in the realm beyond our interest. A Fredholm integral equation of the second kind is employed in association with the Haskind's potential for a steadily moving source of pulsating strength located in or below the free surface. The numerical calculations at the preliminary stage showed a significant fluctuation of the hydrodynamic forces on the surface-piercing body. The problem is approximately solved by using the asymptotic Green function for $U^2{\rightarrow}0$. The original Green function, however, is applied for the fully submerged body. Numerical calculations are made for a submerged and for a half-immersed circular cylinder and extensively for the mid-ship section of a Lewis-form. Some of the results are compared with other analytical results without any available experimental data. The current has strong influence on roll motion near resonance. When the current opposes the waves, the roll response are generally negligible in the low frequency region. The current has strong influence on roll motion near resonance. When the current opposes the wave, the roll response decreases. When the current and wave come from the same direction, the roll response increases significantly, as the current speed increases. The mean drift forces and moment on the submerged body are more affected by current than those on the semi-immersed circular cylinder or on the ship-like section in the encounter frequency domain.

  • PDF

EFDC-WASP을 이용한 진양호의 3차원 수리.수질 변화 모의 (3-Dimensional Hydrodynamic and Water Quality Change Simulation of Jingyang Reservoir Using EFDC-WASP)

  • 정영원;김영도;김정곤
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1079-1083
    • /
    • 2010
  • 하절기에 집중되는 강우로 인해 국내의 경우 저수지와 댐 건설이 불가피 하였으며, 이들 구조물에 의한 수체의 거동 및 수질의 분포 또한 일반 하천과는 다른 특성을 지니고 있다. 특히, 흐름 방향보다 수심 방향으로의 특성이 강하게 작용하는 호소에서는 3차원 수리 수질 모델링을 적용함으로써 모의 결과에 대한 신뢰성을 높일 수 있다. 하천의 발원지로서의 댐(저수지)과 하천과 하천사이에 위치한 저수지의 특성이 다르며, 하천 사이에 위치한 저수지의 경우, 하천과 하천을 이어주며 그 흐름특성과 수질의 분포 및 변화의 양상의 바뀐다는 점에서 독립적이며, 연계되는 구조의 특징을 동시에 반영할 수 있어야 한다. 본 논문에서는 낙동강에 위치한 남강댐(진양호)를 중심으로 연구를 진행하였으며, 안동댐 등처럼 하천의 발원지가 아닌 하천과 하천 사이에 위치한 호소(댐)으로 이와 같은 특징을 반영하여 수질오염총량관리제에서의 목표수질 달성여부와 점 및 비점오염원에서 발생되는 오염부하량의 변화에 따른 저수지 내의 수리 수질 모의를 EFDC-WASP의 연계 모델을 통해 연구하고자 하였다.

  • PDF

쌍축 컨테이너선의 조종성능 특성 연구 (Study on the Maneuvering Characteristics of a Container Ship with Twin Skegs)

  • 김연규;김선영;김형태;유병석;이석원
    • 대한조선학회논문집
    • /
    • 제43권1호
    • /
    • pp.15-21
    • /
    • 2006
  • Recently, the attention to large container ships whose size is greater than 10,000 TEU container ship has been increased due to their increasing demand. The large container ship has twin skegs because of the engine capacity and large beam-draft ratio. In this paper, the maneuvering characteristics of a container ship with twin skegs were investigated through 4DOF(four degree of freedom) HPMM(Horizontal Planar Motion Mechanism) test and computer simulation. A mathematical model for maneuvering motion with 4DOF of twin skegs system was established to include effects of roll motion on the maneuvering motion. And to obtain roll-coupling hydrodynamic coefficients of a container ship, 4DOF HPMM system of MOERI which has a roll moment measurement system was used. HPMM tests were carried out for a 12,000 TEU class container ship with twin skegs at scantling load condition. Using the hydrodynamic coefficients obtained, simulations were made to predict the maneuvering motion. Rudder forces of twin-rudders were measured at the angles of drift and rudder. The neutral rudder angles with drift angles of ship was quite different with those of single skeg ship. So other treatment of flow straightening coefficient $\gamma_R$ was used and the simulation results was compared with general simulation result. The treatment of experimental result at static drift and rudder test was very important to predict the maneuverability of a container ship with twin skegs.

Numerical simulation in time domain to study cross-flow VIV of catenary riser subject to vessel motion-induced oscillatory current

  • Liu, Kun;Wang, Kunpeng;Wang, Yihui;Li, Yulong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.491-500
    • /
    • 2020
  • The present study proposes a time domain model for the Vortex-induced Vibration (VIV) simulation of a catenary riser under the combination of the current and oscillatory flow induced by vessel motion. In this model, the hydrodynamic force of VIV comprises excitation force, hydrodynamic damping and added mass, which are taken as functions of the non-dimensional frequency and amplitude ratio. The non-dimensional frequency is related with the response frequency, natural frequency, lock-in range and the fluid velocity. The relatively oscillatory flow induced by vessel motion is taken into account in the fluid velocity. Considering that the added mass coefficient and the non-dimensional frequency can affect each other, an iterative analysis is conducted at each time step to update the added mass coefficient and the natural frequency. This model is in detail validated against the published test models. The results show that the model can reasonably reflect the effect of the added mass coefficient on the VIV, and can well predict the riser's VIV under stationary and oscillatory flow induced by vessel motion. Based on the model, this study carries out the VIV simulation of a catenary riser with harmonic vessel motion. By analyzing the bending moment near the touchdown point, it is found that under the combination of the ocean current and oscillatory flow the vessel motion may decrease the VIV response, while increase the excited frequencies. In addition, the decreasing rate of the VIV under vessel surge is larger than that under vessel heave at small vessel motion velocity, while the situation becomes opposite at large vessel motion velocity.

주변 유체를 고려한 선박 충돌해석 기법 연구 (Ship Collision Analysis Technique considering Surrounding Water)

  • 이상갑;이정대
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.166-173
    • /
    • 2007
  • Collision analysis problems between ship to ship can be generally classified into the external mechanics(outer dynamics) and internal mechanics(inner dynamics). The former can be also dealt with the concept of fluid-structure interaction and the use of rigid body dynamic program, depending on the ways handling the hydrodynamic pressure due to surrounding water. In this study, full scale ship collision simulation was carried out, such as a DWT 75,000 ton striking ship collided at right angle to the middle of a DWT 150,000 struck ship with 10 knots velocity, coupling MCOL, a rigid body mechanics program for modeling the dynamics of ships, to hydrocode LS-DYNA. It could be confirmed that more suitable damage estimation would be performed in the case of the collision simulations with consideration of surrounding water through the comparison with the collision simulation results of fixed struck ships without it. Through this study, the opportunity could be obtained to establish a more effective ship collision simulation technique between ship to ship.

유한요소법에 의한 다점지지축계의 연성자유횡진동 계산에 관한 연구 (A theoretical calculation of coupled free, transverse vibration of the multi-supported shaft system by the finite element method)

  • 유광택;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.41-49
    • /
    • 1986
  • With the trend towards high propulsive level, increasing ship's dimensions and heavier shaft systems supported by the hull structure of relatively stiffness in modern ships, transverse vibrations of propulsion shaft system have become one of the problems that should be predicted in the early design stage. Regarding transverse vibrations, coupling terms such as oilfilm, gyroscope and hydrodynamic effect of the propeller exist between the vertical and horizontal vibration, furthermore for the shaft system with strut and bossing its physical properties incorporated with hull structure must be considered. In order to predict the transverse vibratory condition of the propulsion shaft and take some appropriate countermeasures, it is necessary to make a fairly strict estimation of the vibratory behaviours of it. In this paper, theoretical approach using the finite element method is investigated to calculate natural frequencies and vibration modes for coupled free transverse vibrations of shaft system in two planes. Based on the method investigated a digital computer program is developed and is applied to calculate the above-mentioned vibrations of an experimental model shaft system. The results of the calculation are compared with those of the experimental measurements and they show an acceptable agreement.

  • PDF

부유식 진자형 파력발전 장치의 파랑운동 수치해석 (Numerical Analysis of Wave-induced Motion of Floating Pendulor Wave Energy Converter)

  • 남보우;홍사영;김기범;박지용;신승호
    • 한국해양공학회지
    • /
    • 제25권4호
    • /
    • pp.28-35
    • /
    • 2011
  • In this paper, the wave-induced motion characteristics of a floating pendulor are investigated numerically. A floating pendulor is a movable-body-type wave energy converter. This device consists of three main parts (floater, pendulum, and damping plates). In order to obtain the hydrodynamic coefficients and wave exciting forces acting on floating bodies, a higher-order boundary element method (HOBEM) using a wave Green function is applied to the present problems. The hinged motion of a pendulum is simulated by applying the penalty method. In order to obtain a more realistic motion response for a pendulor, numerical body damping is included. First, the wave force and motion characteristics of just a floater are observed with respect to different shape parameters. Then, a coupled analysis of a floater, pendulum, and damping plates is carried out. The relative pitch velocity and wave forces acting on the floating pendulor are compared with those of a fixed pendulor.

Semi-active control of vibrations of spar type floating offshore wind turbines

  • Van-Nguyen, Dinh;Basu, Biswajit;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • 제18권4호
    • /
    • pp.683-705
    • /
    • 2016
  • A semi-active algorithm for edgewise vibration control of the spar-type floating offshore wind turbine (SFOWT) blades, nacelle and spar platform is developed in this paper. A tuned mass damper (TMD) is placed in each blade, in the nacelle and on the spar to control the vibrations for these components. A Short Time Fourier Transform algorithm is used for semi-active control of the TMDs. The mathematical formulation of the integrated SFOWT-TMDs system is derived by using Euler-Lagrangian equations. The theoretical model derived is a time-varying system considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar, mooring system and the TMDs, the hydrodynamic effects, the restoring moment and the buoyancy force. The aerodynamic loads on the nacelle and the spar due to their coupling with the blades are also considered. The effectiveness of the semi-active TMDs is investigated in the numerical examples where the mooring cable tension, rotor speed and the blade stiffness are varying over time. Except for excessively large strokes of the nacelle TMD, the semi-active algorithm is considerably more effective than the passive one in all cases and its effectiveness is restricted by the low-frequency nature of the nacelle and the spar responses.

Modeling and analysis of a cliff-mounted piezoelectric sea-wave energy absorption system

  • Athanassoulis, G.A.;Mamis, K.I.
    • Coupled systems mechanics
    • /
    • 제2권1호
    • /
    • pp.53-83
    • /
    • 2013
  • Sea waves induce significant pressures on coastal surfaces, especially on rocky vertical cliffs or breakwater structures (Peregrine 2003). In the present work, this hydrodynamic pressure is considered as the excitation acting on a piezoelectric material sheet, installed on a vertical cliff, and connected to an external electric circuit (on land). The whole hydro/piezo/electric system is modeled in the context of linear wave theory. The piezoelectric elements are assumed to be small plates, possibly of stack configuration, under a specific wiring. They are connected with an external circuit, modeled by a complex impedance, as usually happens in preliminary studies (Liang and Liao 2011). The piezoelectric elements are subjected to thickness-mode vibrations under the influence of incident harmonic water waves. Full, kinematic and dynamic, coupling is implemented along the water-solid interface, using propagation and evanescent modes (Athanassoulis and Belibassakis 1999). For most energetically interesting conditions the long-wave theory is valid, making the effect of evanescent modes negligible, and permitting us to calculate a closed-form solution for the efficiency of the energy harvesting system. It is found that the efficiency is dependent on two dimensionless hydro/piezo/electric parameters, and may become significant (as high as 30 - 50%) for appropriate combinations of parameter values, which, however, corresponds to exotically flexible piezoelectric materials. The existence or the possibility of constructing such kind of materials formulates a question to material scientists.

진공차단부에서 발생하는 확산형 아크 수치해석 (Numerical Study on a Diffused-mode Arc within a Vacuum Interrupter)

  • 조성훈;황정훈;이종철;최명준;권중록;김윤제
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.479-482
    • /
    • 2008
  • In order to more closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, the thermal-fluid characteristics of high current vacuum arcs were calculated by a commercial multiphysics package, ANSYS, in order to obtain Joule heat, Lorentz force and the interactions with flow variables. We assumed the diffused-mode arc within an AMF vacuum interrupter. It was found with four different currents that the temperature distributions on the anode surface are diffused uniformly without concentration in 7kA for both types (cup and coil-type). But the arc plasma transition and an increase of thermal flux density for increasing the applied current have caused the change of temperature distributions on the anode surface. We should need further studies on the two-way coupling method and radiation model for arc plasmas in order to accomplish the advanced analysis method for multiphysics.

  • PDF