• 제목/요약/키워드: Hydrodynamic Stability

검색결과 230건 처리시간 0.026초

그루브형상을 고려한 빗살무늬저널베어링의 유한요소해석 (An Analysis of Herringbone Groove Journal Bearing Considering Groove Shape)

  • 신동우;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.162-169
    • /
    • 1999
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. Conventional studies on HGJB were based on the Narrow Groove theory assuming that the number of grooves approaches infinity. In this study, an oil lubricated HGJB is analyzed using Finite Element Method. Load carrying capacity, attitude angle, stiffness and damping coefficients are obtained numerically for various bearing configurations especially for the inclined width ratio and asymmetric ratio and compared with the results obtained using Finite Volume Method. The bearing load and stability characteristics are dependent on geometric parameters such as inclined width ratio, asymmetric ratio, groove depth ratio, groove width ratio, groove angle.

  • PDF

CE형 원전 증기발생기 전열관의 유동유발진동 해석 (Flow-induced Vibration of the CE-type Steam Generator Tube)

  • 유기완;박치용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.828-833
    • /
    • 2001
  • In this study, an analysis tool to assess the susceptibility of steam generator tubes due to the flow-induced vibration was developed. The fluid-elastic instability analysis of the U-tube bundle for CE-type steam generator was accomplished. The effective mass distribution along the U-tube was obtained to calculate the natural frequency and dynamic mode shape. Finally, stability ratios for selected tubes are obtained.

  • PDF

그루브형상을 고려한 빗살무늬저널베어링의 유한요소해석 (An Analysis of Herringbone Groove Journal Bearing Considering Groove Shape)

  • 신동우;임윤철
    • Tribology and Lubricants
    • /
    • 제16권6호
    • /
    • pp.425-431
    • /
    • 2000
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. Conventional studies on HGJB were based on the Narrow Groove theory assuming that the number of grooves approaches infinity. In this study, an oil lubricated HGJB is analyzed using Finite Element Method. Load carrying capacity, attitude angle, stiffness and damping coefficients are obtained numerically for various bearing configurations especially for the inclined width ratio and asymmetric ratio and compared with the results obtained using Finite Volume Method. The bearing load and stability characteristics are dependent on geometric parameters such as inclined width ratio, asymmetric ratio, groove depth ratio, groove width ratio, and groove angle.

A Parametric Study on the Characteristics of the Oil-Lubricated Wave Journal Bearing

  • Suh, Hyun-Seung;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • 제2권1호
    • /
    • pp.59-64
    • /
    • 2001
  • A new bearing concept, the wave journal bearing, has been developed to improve the static and dynamic performance of a hydrodynamic journal bearing. This concept features a wave in bearing surface. Not only straight but also twisted wave journal bearings are investigated numerically. The performances of straight and twisted bearings are compared to a plain journal bearing over a wide range of eccentricity. The bearing load and stability characteristics are dependent on the geometric parameters such as the number of waves, the amplitude and the starting point of the wave relative to the applied load direction. The bearing performance is analyzed for various configurations and for both cases of smooth and wave member notation. The wave journal bearing, especially for the twisted one, offers better stability than the plain journal bearing under all eccentricity ratios and load orientation.

  • PDF

Near-Field Mixing Characteristics of Submerged Effluent Discharges into Masan Bay

  • Kang, See-Whan;You, Seung-Hyup;Na, Jung-Yul
    • Ocean and Polar Research
    • /
    • 제22권1호
    • /
    • pp.45-56
    • /
    • 2000
  • Hydrodynamic mixing characteristics of submerged effluent discharges into Masan Bay were investigated by both field observations and numerical model simulations. CORMIX model, a length-scale mixing model, was adopted to obtain the near-field dilution and wastefield characteristics of the effluent discharges into Masan Bay. Model predictions of the near-field dilution rates were in a good agreement with field observations in summer and winter seasons. Seasonal variations in the dilution rates showed that the highest dilution rate was obtained in winter while the lowest dilution rate was in summer. As the effluent discharges are increased with the treatment capacity expansion to be completed by 2011, the dilution rates are expected to be much reduced and the near-field stability of the wastefields will become unstable due to the increased effluent discharges.

  • PDF

수중함의 함미타 효율추정을 위한 수학모델링에 관한 연구 (A Research on the Mathematical Modeling for the Estimation of Underwater Vehicle's Tail Plane Efficiency)

  • 신용구;임경식;이승건
    • 대한조선학회논문집
    • /
    • 제42권3호
    • /
    • pp.190-196
    • /
    • 2005
  • The ratio between the hydrodynamic force produced by a submarine tau appendage and that acting on an equivalent appendage in isolation is regarded as tail plane efficiency. It is an important parameter in numerical simulations because it has a significant effect on predicted stability, controllability, and maneuverability. The paper introduces some recent work to improve the reliability and general applicability of current methods of tail plane efficiency estimation.

선박의 선회권 작성에 관한 고찰 (A Study on Developing Ship's Turing Circles)

  • 송강섭;허일
    • 한국항해학회지
    • /
    • 제3권1호
    • /
    • pp.1-17
    • /
    • 1979
  • It is very important for both naval architects and ship's officers to know the maneuvering characteristics of their ships. As the abilities of a rudder which controlls a ship can be determined clearly by analyzing the results of Kempf's zig-zag maneuver and directional stability of a ship also known by Dieudonn spiral maneuver, the importance of turning test which takes much time is recently apt to be neglected. But because the test can be executed comparatively more simply than any other maneuvering tests, it gives some informations on the directional stability, and turning characteristics may be expressed simply by the results of the test, it is still often performed. In this paper several assumptions are made to simplify the turning motion of a ship. The equations of initial transient phase, the radius ofsteady turning circle, and the center of the steady turning point are derived by using the hydrodynamic derivatives. And then the approximate method of drawing the turning circle geometrically is suggested.

  • PDF

Feasibility study for wrap-buoy assisted wet-tow and stepwise installation of mono-bucket foundation for 15 MW offshore wind turbine

  • Ikjae, Lee;Moohyun, Kim
    • Ocean Systems Engineering
    • /
    • 제12권4호
    • /
    • pp.413-437
    • /
    • 2022
  • An innovative concept for wet-transportation and stepwise installation of mono-bucket foundation for 15 MW offshore wind turbine is proposed. Case studies for two different mono-bucket and wrap-buoy dimensions are conducted and their hydrostatic and hydrodynamic performances are compared for both wet-towing and lowering operations. The intact stability and transient responses are analyzed in detail for various stages of lowering operation. Wave-induced motion statistics during wet tow in sea state 4 (highest operational window) are checked. The proposed concept is found to be feasible and can be an alternative cost-effective solution without using heavy-lift crane vessel in practice.

천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 1. 해수유동 모델의 정확성 검토 (Development of the Combined Typhoon Surge-Tide-Wave Numerical Model Applicable to Shallow Water 1. Validation of the Hydrodynamic Part of the Model)

  • 천제호;안경모;윤종태
    • 한국해안·해양공학회논문집
    • /
    • 제21권1호
    • /
    • pp.63-78
    • /
    • 2009
  • 본 논문에서는 천해에 적용 가능한 동적결합형 태풍 해일-조석-파랑 수치모델의 개발과 개발된 모델의 정확성을 검증하였다. 태풍 해일과 조석 수치모델은 POM (Princeton Ocean Model)을 기반으로 하였으며, 풍파 파랑 수치모델은 WAM (Wave Model)을 기반으로 천해에 적용할 수 있도록 수정하여 두 모델을 동적으로 결합하였다. 연속된 두 개의 논문 중에 첫 번째 논문인 본 논문에서는 해일과 조석을 수치 모의하는 해수유동 부분의 수치모의의 안정성과 정확성을 검증하였다. 수치모의의 안정성과 정확성 향상을 위하여 기존의 POM 모델의 난류 수치모델 부분과 연직속도 계산 알고리즘을 수정 보완하였다. 수정된 POM 모델의 정확성과 수치적 안정성 검증을 위하여 해석해와 실 해역에서 측정된 관측결과와 비교하였으며, 수정된 POM 모델이 기존의 POM 모델보다 수치계산의 안정성과 정확성이 개선되었음을 확인할 수 있었다.

지진 하중을 받는 원통형 플랜트 탱크 구조물의 축방향 허용압축응력 설계기준 비교 연구 (Comparison of Allowable Axial Stress Provisions of Cylindrical Liquid Storage Tanks under Seismic Excitation)

  • 오창국;이소리;박장호;배두병
    • 한국강구조학회 논문집
    • /
    • 제28권4호
    • /
    • pp.293-301
    • /
    • 2016
  • 건플랜트 내부의 주요 시설물인 원통형 액체저장탱크에 지진 하중이 작용하면 탱크 벽체에 좌굴이 발생하여 큰 손실을 초래할 수 있다. 탱크 구조물 설계시 좌굴에 대한 허용응력을 규정한 국내 기준은 일관성이 부족하고 근거가 미약하여 주로 국외의 API 650, BS EN 1998-4:2006, 뉴질랜드 기준 등을 차용하고 있다. 본 연구에서는 서로 다른 형상 비를 갖는 탱크 구조물에 대해 응답스펙트럼해석을 수행하여 유체 동압력을 산정한 후 재료 및 기하비선형을 고려한 비선형 좌굴해석을 수행하여 축방향 허용좌굴응력을 산정하고 국외 기준과의 비교를 통해 적절한 국내 기준을 제안하였다.