• 제목/요약/키워드: Hydrodynamic Performance

Search Result 492, Processing Time 0.035 seconds

The Effects of Distal Sinus on the Hydrodynamic Performance of the Prosthetic Heart Valves (인공판막 후부 공동부가 판막의 수력학적 성능에 미치는 영향)

  • 이계한;서종천
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.297-303
    • /
    • 1998
  • The sinus distal to the prosthetic heart valve influences the valve closure behavior and velocity field near the valve, therefore affects the hydrodynamic performance of the prosthetic heart valve. In order to study the effects of valve distal geometry on the hydrodynamic performance of the prosthetic valves, mechanical bileaflet valve(SJMV), monoleaflet polymer valve(MLPV) and trileaflet polymer valve(FTPV) are inserted in the test sections which have the straight and the sinus shape distal to the valve. Leakage volumes and systolic mean pressure drops are measured in the pulsatile mock circulation flow loop. Leakage volumes are slightly less and systolic mean pressure drops are higher in the sinus test section comparing to those in the straight test section, but the differences are statistically insignificant. Flow waveforms are analyzed in order to predict the valve closure behavior. The distal sinus does not affect the closure of the MLPV, but early valve closure of SJMV is observed in the sinus test section. This effect is more significant in FTPV, and the reverse flow peak of FTPV is reduced in the sinus test section. Therefore the sinus distal to the valve can reduce the reverse flow jet caused by sudden valve closure.

  • PDF

Feasibility Study of Submerged Floating Tunnels Moored by an Inclined Tendon System

  • Won, Deokhee;Kim, Seungjun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1191-1199
    • /
    • 2018
  • Concepts of submerged floating tunnels (SFTs) for land connection have been continuously suggested and developed by several researchers and institutes. To maintain their predefined positions under various dynamic environmental loading conditions, the submerged floating tunnels should be effectively moored by reasonable mooring systems. With rational mooring systems, the design of SFTs should be confirmed to satisfy the structural safety, fatigue, and operability design criteria related to tunnel motion, internal forces, structural stresses, and the fatigue life of the main structural members. This paper presents a feasibility study of a submerged floating tunnel moored by an inclined tendon system. The basic structural concept was developed based on the concept of conventional cable-stayed bridges to minimize the seabed excavation, penetration, and anchoring work by applying tower-inclined tendon systems instead of conventional tendons with individual seabed anchors. To evaluate the structural performance of the new type of SFT, a hydrodynamic analysis was performed in the time domain using the commercial nonlinear finite element code ABAQUS-AQUA. For the main dynamic environmental loading condition, an irregular wave load was examined. A JONSWAP wave spectrum was used to generate a time-series wave-induced hydrodynamic load considering the specific significant wave height and peak period for predetermined wave conditions. By performing a time-domain hydrodynamic analysis on the submerged floating structure under irregular waves, the motional characteristics, structural stresses, and fatigue damage of the floating tunnel and mooring members were analyzed to evaluate the structural safety and fatigue performance. According to the analytical study, the suggested conceptual model for SFTs shows very good hydrodynamic structural performance. It can be concluded that the concept can be considered as a reasonable structural type of SFT.

Performance Predictions for Sailing Yacht by Towing Tests and VPP Calculation (예인수조 시험 및 VPP 계산에 의한 세일링 요트의 성능 추정)

  • Yoo Jae-Hoon;Ahn Hae-Seong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.116-124
    • /
    • 2006
  • A model test was carried out, in order to verify the hydrodynamic performances of public 30 feet class sailing yacht. In the initial design stage, the performances and the running attitude of sail yacht including the hull form and sail plan, appendages were estimated by VPP, from which made the representative test conditions. A new experiment system such as captive model device was composed because the running attitude could be changed by wind conditions. The test results show that the minimum resistance is generated in the heeling 20 degree. which was expected in the initial design stage. It is thought to be the useful informations that the keel has an effects on hydrodynamic forces and resistance differences between the upwind and the downwind condition. Also this paper is associated with the state-of-the-art of calculating sailing yacht performance as this is performed in velocity Prediction program (VPP) The VPP results shows a typical shape of a sailing yacht and the designed yacht has the best performance at 120 degree angle of true wind with 20 knots.

Experimental Investigation For Various Propeller Tunnel Geometry Effect On Propulsion Performance (프로펠러 보호터널 형상이 추진성능에 미치는 영향에 대한 실험적 고찰)

  • Suh, Sung-Bu;Park, Choong-Hwan;Moon, Il-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.40-45
    • /
    • 2007
  • This study was performed to investigate the effect of various propeller tunnel shapes on the propulsion performance of a fishing boat. The propeller tunnel reduces the problem resulting from the open propeller accidentally catching the waste net and cable on the sea, as well as increasing the cruising speed. For 3 different tunnel geometries, the model test is conducted in the circular water channel, and the potential based panel method was applied to analyze the hydrodynamic characteristics of propeller. Also, both results are compared with each other to represent the difference between results of the model scale test and the potential theory. It is expected that these results could be referenced in the design of the propeller tunnel in consideration of the hydrodynamic interaction between the propeller and the tunnel.

Performance Predictions for Sailing Yacht (세일링 요트의 성능 추정에 관한 연구)

  • Yoo, Jae-Hoon;Ahn, Hae-Seong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.824-831
    • /
    • 2005
  • A model test was carried out, in order to verify the hydrodynamic performances of public 30 feet class sailing yacht. In the initial design stage, the performances and the running attitude of sail yacht including the hull form and sail plan, appendages were estimated by VPP, from which made the representative test conditions. A new experiment system such as captive model device was composed because the running attitude could be changed by wind conditions. The test results show that the minimum resistance is generated in the heeling 20 degree, which was expected in the initial design stage. It is thought to be the useful informations that the keel has an effects on hydrodynamic forces and resistance differences between the upwind and the downwind condition. Also this paper is associated with the state-of-the-art of calculating sailing yacht performance as this is performed in velocity prediction program (VPP). The VPP results shows a typical shape of a sailing yacht and the designed yacht has the best performance at 120 degree angle of true wind with 20 knots.

  • PDF

Hydrodynamic Characteristics of Vaned-Diffuser and Return-Channel for a Multistage Centrifugal Pump (원심다단펌프용 디퓨저-리턴채널의 유동특성)

  • Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.54-60
    • /
    • 2011
  • This paper presents the steady-state performance analysis of the first stage of a multistage centrifugal pump, composed of a shrouded-impeller, a vaned-diffuser and a return-channel, using the commercially available computational fluid dynamics (CFD) code, ANSYS CFX. The detailed flow fields in the vaned-diffuser with outlet in its side wall and the return-channel are investigated by the CFD code adopted in the present study. The effect of the vaned-diffuser with a downstream crossover bend and the corresponding return-channel on the overall hydrodynamic performance of the first stage pump has also been demonstrated over the normal operating conditions. The predicted hydrodynamics for the diffusing components herein could provide useful information to match the inlet blade angle of the next stage impeller for improving the multistage pump performances.

Series Design of Compressors for Two-Stage Centrifugal Chiller

  • Jinhee Jeong;Lee, Hyeongkoo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.288-295
    • /
    • 2003
  • A preliminary series design of compressors for a two-stage centrifugal chiller is suggested. Six groups of hydrodynamically similar compressors, ranging from 233RT to 1,200RT, are introduced. Flow rates, impeller diameters, and wheel speeds for each group are determined from hydrodynamic similarity to share impellers of adjacent groups. It is expected that these compressors can have the same performance and efficiency from the smallest model to the largest one.

Hydrodynamic pressure distribution between a piston and cylinder - Experiment (1) (피스톤과 실린더 사이에서의 압력분포-실험(1))

  • 김영환;박태조
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.304-309
    • /
    • 2001
  • In this paper, the hydraulic oil pressure distributions are measured in the clearance gap between a stationary piston and moving cylinder apparatus. The results showed that the hydrodynamic pressure distributions are highly affected by the speed of cylinder and further experimental and analytical studies are required to obtain more accurate results. Therefore present experimental method can be used to enhance the performance of various hydraulic components adopting the piston-cylinder mechanism.

  • PDF

Water Performance Test of Pumps for a 7 Ton Class Rocket Engine (7톤급 로켓엔진용 펌프 수류 성능시험)

  • Hong, Soonsam;Kim, Daejin;Choi, Changho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.89-95
    • /
    • 2015
  • Performance test was conducted for an oxidizer pump and a fuel pump for a 7 ton class rocket engine, by using water. The pumps were driven by an electric motor. The hydrodynamic performance and the suction performance were measured at flow ratio of the design and off-design conditions. Head-flow curve, efficiency-flow curve, and head-cavitation number curve were obtained. It is confirmed that the pumps can satisfy the design requirements of hydrodynamic performance in terms of the head and the efficiency. The pumps also satisfied the design requirements of suction performance.