Dam reservoirs play a particularly crucial role in processing the allochthonous and the autochthonous dissolved (DOC) and the particulate (POC) organic carbon and in the budget of global carbon cycle. However, the complex physical and biogeochemical processes make it difficult to capture the temporal and spatial dynamics of the DOC and the POC in reservoirs. The purpose of this study was to simulate the dynamics of the DOC and the POC in Daecheong Reservoir using the 3-D hydrodynamics and water quality model (AEM3D), and to quantify the mass balance through the source and sink fluxes analysis. The AEM3D model was calibrated using field data collected in 2017 and showed reasonable performance in the water temperature and the water quality simulations. The results showed that the allochthonous and autochthonous proportions of the annual total organic carbon (TOC) loads in the reservoir were 55.5% and 44.5%, respectively. In season, the allochthonous loading was the highest (72.7%) in summer, while in autumn, the autochthonous loading was the majority (77.1%) because of the basal metabolism of the phytoplankton. The amount of the DOC discharged to downstream of the dam was similar to the allochthonous load into the reservoir. However, the POC was removed by approximately 96.6% in the reservoir mainly by the sedimentation. The POC sedimentation flux was 36.21 g-C/㎡/yr. In terms of space, the contribution rate of the autochthonous organic carbon loading was high in order of the riverine zone, the transitional zone, and the lacustrine zone. The results of the study provide important information on the TOC management in the watersheds with extensive stagnant water, such as dam reservoirs and weir pools.
낙동강과 밀양강의 합류지점에 위치한 김해시 딴섬 지역의 지표면하 $25{\sim}35\;m$ 구간에 형성되어 있는 고투수성 충적층 내 염소이온의 수리분산특성을 연구하기 위한 수렴흐름 추적자시험(convergent flow tracer test)이 수행되었다. 추적자로는 IW-1공과 IW-2공에서 각각 염소이온 5kg이 순간주입(instantaneous injection) 되었으며, PW공에서 일정한 양수율(2,500 m3 /day)로 채수하면서 염소이온농도를 관측하였다. 염소이온 주입 후 경과시간에 따른 염소이온농도 자료를 이용하여 농도이력곡선과 누적질량회수곡선이 산출되었으며, 관측된 염소이온농도의 정규분포를 검증하기 위한 일반통계분석이 수행되었다. 그리고, 농도이력의 증가/감소 구간에서의 함수를 추정하였으며, 두 시험에서 동일한 시간에 관측된 염소이온농도의 상관성이 분석되었다. 본 현장에서 수행된 추적자시험에 의한 종분산지수의 추정은 CATTI 코드(Sauty and Kinzelbach, 1992)에 의해 해석되었다. 추정된 종분산지수는 IW-1공과 PW공 구간에서는 0.4152 m, IW-2공과 PW공 구간에서는 0.4158 m 로서 매우 유사한 값으로 나타났다. 이는 추적자시험이 수행된 충적층에서의 용질이송이 방사상으로 비교적 균일함을 의미하는 것이다. 본 연구에서 수행된 추적자시험의 규모(2 m)를 Xu and Eckstein(1995)이 제시한 방정식에 대입하여 산정된 종분산지수는 0.0458 m 이었다. 이러한 결과는, 본 연구지역에서 수렴흐름 추적자시험에 의해 추정된 고투수성 충적층의 종분산지수가 일반적인 자연대수층에 비해 9.1배 정도 높다는 것을 의미한다. 이는 시험대수층의 투수성이 매우 높아 염소이온의 용질이송이 매우 빠르게 발생되었기 때문이다. 본 연구에서 추정된 종분산지수를 Gelhar et al.(1992)의 연구 결과와 비교 분석한 결과에서도 시험규모에 비해 매우 높은 수리분산이 발생된 것으로 나타났다. 그리고 염소이온의 확산면적을 추정하기 위해, 수렴흐름 추적자시험에 의한 종분산지수와 시험대수층의 평균선형유속을 이용하여 종분산계수를 구하였다. 현장에서 수행된 양수시험에 의한 평균선형유속 22.44 m/day와 평균 종분산지수 0.4155 m를 적용하여 산정된 종분산계수는 $9.32\;m^2/day$이었다. 따라서, 시험부지 내 충적층에서 일정한 양수율$(2,500\;m^3/day)$로 지하수를 개발할 시에 양수정 주변지역으로 유입되는 염소이온의 확산면적은 1일 $9.32\;m^2$ 정도일 것으로 나타났다.
대기 오염, 기후 변화 등 환경 문제와 자원 고갈로 인해 화석 연료를 대체할 에너지에 많은 관심이 집중되고 있다. 폐바이오매스의 에너지화 분야에서도 다양한 연구가 이루어지고 있다. 폐목질계 바이오매스의 급속열분해는 바이오매스 에너지화 기술 중 하나로 액상 연료를 생산할 수 있다. 바이오매스의 급속열분해에는 주로 기포유동층 반응기가 쓰이고 있으며, 기포유동층 급속열분해 반응기에서는 반응물에 열을 효과적으로 전달하기 위하여 고체입자의 유동매체를 이용한다. 이러한 기포유동층 반응기에서 유동층 내 고체 입자의 움직임과 혼합은 기포의 거동에 영향을 받는다. 이로 인해 열전달 현상이 달라지고 결과적으로는 폐목질계 바이오매스의 급속열분해 반응 속도가 변한다. 따라서 본 연구에서는 기포유동층 반응기 내부의 수력학적 특성과 폐목질계 바이오매스 급속열분해 반응에 관한 연구를 수행하였다. 반응기내의 기체-고체 유동에 대해 Eulerian-Granular 방법을 사용하여 반응기를 시뮬레이션 하였으며, two-stage semi-global reaction model로 폐바이오매스의 급속 열분해반응을 모사하였다. 결과를 살펴보면, 유동층 내에서 기포들이 생성되고 상승하면서 크기가 증가한다. 이러한 기포의 거동에 의해 기포 주위의 고체 입자는 여러 방향으로 움직이게 된다. 고체 입자상의 활발한 움직임으로 바이오매스 입자가 유동층에 골고루 퍼져 일차 반응이 유동층 전반에서 일어난다. 그리고 일차 반응 중 타르가 생성되는 반응 속도가 가장 높게 나타난다. 그 결과 기체상 생성물 중 타르가 약 66 wt.%로 가장 많이 발생한다. 반면 이차 반응은 유동층에서보다 freeboard에서 더 많이 일어난다. 따라서 기포의 거동이나 입자의 움직임에 의한 영향은 일차 반응보다 상대적으로 적을 것으로 판단된다.
This paper provides the numerical results for the self-propulsion performance in waves of a car ferry vessel with damage in one of its twin-screw propulsion systems without flooding the engine room. The numerical simulations were carried out according to the Safe Return to Port (SRtP) regulation made by the Lloyd's register, where the regulation requires that damaged passenger ships should have an ability to return to port with a speed of 6 knots in a Beaufort 8 sea condition. For the validation of the present numerical analysis study, the resistance performance and the self-propulsion performance of the car ferry in intact and damaged conditions in calm water were calculated, which showed a satisfactory agreement with the model test results of Korea Research Institute of Ship and Ocean engineering (KRISO). Finally, the numerical simulation of self-propulsion performance in waves of the damaged car ferry ship was carried out for a normal sea state and for a Beaufort 8 sea state, respectively. The estimated average Brake Horse Power (BHP) for keeping the damaged car ferry ship advancing at a speed of 6 knots in a Beaufort 8 sea state reached about 47% of BHP at MCR condition or about 56% of BHP at NCR condition of the engine determined at the design state. In conclusion, it can be noted that the engine power of the damaged car ferry ship in single propulsion condition is sufficient to satisfy the SRtP requirement.
기존 화석 연료의 고갈 및 환경오염의 문제와 대용량 발전을 위하여 해양환경 및 자원을 이용한 친환경에너지 발전에 대한 연구 및 개발이 증가하고 있으며, 이 중 높은 발전 효율을 가진 해상태양광 발전에 대한 연구가 크게 증가하고 있다. 환경하중이 비교적 약한 내수조건과 달리, 환경하중이 강한 해양에서의 태양광 발전을 위해서는 더 강한 강성의 구조재를 사용해야 한다. 하지만, 구조재의 생산 가능성, 무게를 포함한 구조물 특성 및 경제적 효율성 등의 제약조건이 발생할 수 있다. 따라서, 본 연구에서는 부유식 방파제를 설치함으로써 태양광구조물에 작용하는 파랑하중을 감소시켜 구조재의 강성 강화를 최소화하고자 하였다. 부유식 방파제의 크기 및 구조물로부터의 거리를 변화하여 이에 따른 파랑하중 및 구조재 응력의 감소 정도를 확인하였다. 다수 부력체의 상호간섭을 고려한 파랑하중의 경우, 고차경계요소법(Higher-Order Boundary Element Emthod)을 이용해 산정하였으며, 구조재에 작용하는 응력은 유한요소법(Finite Element Method)을 통해 평가하였다. 각 조건에서의 최대응력을 분석 및 비교함으로써 해상태양광 발전 시스템에 대한 부유식 방파제의 영향을 확인하였으며, 부유식 방파제의 크기가 파랑하중 및 구조재 응력 감소에 큰 영향을 미침을 확인하였다.
본 연구에서는 다양한 형상의 우주 물체와 우주 구조물 사이의 충돌 각도를 고려한 초고속 충돌(Hypervelocity impact) 시뮬레이션 연구를 수행하였다. 비선형 구조 동역학 전산 해석 프로그램인 LS-DYNA의 완화 입자 유동법(Smoothed Particle Hydrodynamics, SPH)을 사용하여 초고속 충돌 현상을 묘사하였으며, 금속 재료의 비선형 거동을 구현하기 위하여 Mie-Grüneisen의 상태 방정식과 Johnson-Cook의 재료 모델을 사용하였다. 구, 정육면체, 원기둥 및 원뿔 형상의 다양한 형상의 우주 물체를 이용하였으며, 우주 구조물은 알루미늄 평판(200 mm×200 mm×2 mm)으로 모델링되었다. 우주 물체가 우주 구조물 대비 4.119 km/s의 상대 속도로 충돌하는 시뮬레이션을 수행하여 동일 질량을 갖는 다양한 형상의 우주 물체와 우주 구조물 사이의 0°, 30° 및 45°의 충돌 각도를 고려하였을 시 초고속 충돌에 의하여 발생되는 파편운(debris cloud) 형상을 분석하였다. 동일한 운동 에너지를 갖는 우주 물체는 형상의 차이로 인해 모두 다른 파편운이 형성되었다. 더불어 충돌 각도의 증가에 따라 파편운의 크기가 줄어드는 경향을 확인하였다.
하구언과 방조제 건설에 따라 고극조위 상승과 같은 조석환경 변화가 심한 무안만에서 표층퇴적물의 분포 변화와 변화 원인을 규명하기 위하여 퇴적물 시료를 채취하고 조류관측을 실시하였다. 무안만의 표층퇴적물은 1998년에 비해 역과 사의 조립질퇴적물의 함량이 증가하고 실트의 함량이 감소하여 퇴적물의 평균입도는 6.2${\phi}$에서 5.8${\phi}$로 조립해지는 경향을 보였다. 조립질퇴적물의 함량 증가와 실트의 함량 감소는 만조선 주변을 중심으로 광범위하게 나타났으며, 특히 동암리와 구로리, 압해도 조간대에서 두드러지게 나타났다. 만조선 주변의 조립화 현상은 일차적으로 하구언 및 방조제 건설에 따른 고극조위 상승에 기인하는 것으로 해석된다. 한편, 서측 만입구 주변에서 세립질퇴적물의 함량이 증가하는 현상은 인공구조물(교각) 건설에 따른 조류속의 감소와 위상차에 의한 조류의 방향 변화 등 수류의 변형에 기인하는 것으로 판단된다.
중층트를 어구(漁具)의 소해심도(掃海深度)를 일정(一定)한 적정어획속도(適正漁獲速度)에서 기동성(機動性)있게 변화(變化)시키기 위하여 기초적인 모형어구(模型漁具)의 수조실험(水槽實驗)과 특별(特別)히 고안한 깊이바꿈틀을 이용(利用)한 이차(二次)에 걸친 해상시험(海上試驗)을 통(通)하여 연구한 결과를 요약(要約)하면 다음과 같다. 1. 중층(中層)트롤의 그물어구의 깊이 y는 끌줄의 길이 L과 단위(單位) 길이의 끌줄, 깊이바꿈틀 및 그물의 각(各) 수중중량(水中重量) $W_r,\;W_o,\;W_n$과 각(各) 항력(抗力) $R_r,\;R_o,\;R_n$ 사이의 관계(關係)는 차원해석법(次元解析法)에 의하면 다음과 같다. $$y=kLf(\frac{W_r}{R_r},\;\frac{W_o}{R_o},\;\frac{W_n}{R_n})$$ 단(但), k는 상수(常數)이고 f는 함수이다. 2. 단위 길이당(當)의 수중중량(水中重量) $W_r$, 길이 L인 끌줄 끝에 항력(抗力) $D_n$, 수중중량(水中重量) $W_n$d인 수중저항분를 매달고 끌줄의 다른 한 끝을 수면(水面)에서 예인(曳引)할 때,. 끌줄의 형상(形狀)을 현수곡선이라고 보면, 수중저항분의 깊이 y는 다음과 같다. $$y=\frac{1}{W_r}\{\sqrt{{D_n^2}+{(W_n+W_rL)^2}}-\sqrt{{D_n^2+W_n}^2\}$$ 3. 중층(中層)트롤의 그물어구(漁具)깊이의 변화(變化) ${\Delta}y$는 예강(曳綱)의 길이 L을 바꾸거나 추(錘) ${\Delta}W_n$를 부가(附加)하면 다음과 같다. $${\Delta}y{\approx}\frac{W_n+W_{r}L}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}{\Delta}L$$$${\Delta}y{\approx}\frac{1}{W_r}\{\frac{W_n+W_rL}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}-{\frac{W_n}{\sqrt{D_n^2+W_n^2}}\}{\Delta}W_n$$ 단(但), $D_n$은 그물어구의 항력(抗力)이다. 4. 끌줄 상(上)의 중간점(中間点)에 추(錘) $W_s$를 부가(附加)할 때 중층(中層)트롤 그물어구의 깊이바꿈 ${\Delta}y$는 $${\Delta}y=\frac{1}{W_r}\{(T_{ur}'-T_{ur})-T_u'-T_u)\}$$ 단(但) $$T_{ur}^l=\sqrt{T_u^2+(W_s+W_{r}L)^2+2T_u(W_s+W_{r}L)sin{\theta}_u$$$$T_{ur}=\sqrt{T_u^2+(W_{r}L)^2+2T_uW_{r}L\;sin{\theta}_u$$$$T_{u}'=\sqrt{T_u^2+W_s^2+2T_uW_{s}\;sin{\theta}_u$$$T_u$ 추(錘)를 부가(附加)하지 않았을 때 끌줄 상(上)의 중간점(中間点)에 있어서의 예인어선(曳引漁船) 쪽을 향하는 장력(張力)이고, ${\theta}_u$는 장력(張力) $T_u$와 수평방향(水平方向)과 이루는 각도(角度)이다. 5. 어떠한 형태(形態)의 저예강용(底曳綱用) 전개판(展開板)도 성능(性能)에 있서어 차이는 있으나 전중량(全重量)을 가볍게 하고 저변(底邊)에 무게를 달아 안정(安定)시키면 중층예강용(中層曳綱用)으로 사용(使用)할 수 있다는 것이 모형(模型) 실험(實驗)결과 밝혀졌다. 6. 모형(模型) 그물(Fig.6)의 수조실험(水槽實驗)에서는 예강속도(曳綱速度) v m/sec, 강고(綱高) H cm 및 수유저항(水流抵抗) R kg 사이에는 다음과 같은 간단(簡單)한 관계식(關係式)이 성립(成立)한다. $$H=8+\frac{10}{0.4+v}$$$R=3+9v^2$$ 7. 특별(特別)히 고안한 십자(十字)날개형(型) 깊이바꿈틀과 H날개형(型) 깊이 바꿈틀을 비교(比較)한 결과(結果) 전자(前者)보다 안정성(安定性)이 우월하였다. 8. 그물어구(漁具)의 유수저항(流水抵抗)이 매우 크며 또 거의가 항력(抗力)으로 볼 수 있으므로 깊이바꿈틀의 종류에 관계없이 그물어구의 소해심도(掃海深度)는 대단히 안정(安定)된 상태를 유지하였다. 9. H날개형(型) 깊이바꿈틀의 수평(水平)날개 면적율 $1.2{\times}2.4m^2$로 하였을 때 유수저항(流水抵抗) 2 ton의 그물 어구를 2.3kts로 예인(曳引)하면서 영각(迎角)을 $0^{\circ}{\sim}30^{\circ}$로 변화(變化)시킨 결과(結果), 끌줄의 길이에 관계없이 약(約) 20m의 깊이바꿈을 얻을 수 있었다.
SICM (scanning ion conductivity microscopy)은 nanopipette이 시료에 접근하게 되면서 tip에 인가되는 전류값의 변화가 발생하는데, 이를 이용하여 시료의 표면 형상을 측정하는 분석기술이다. 본 연구는 SICM mapping의 기본이 되는 tip과 시료 간의 거리에 의한 전류 반응곡선인 approach curve에 대해 연구한 결과를 담고 있다. Approach curve에 대해 우선 시뮬레이션 해석을 진행하였으며, 이를 기반으로 실험을 병행하여 이 둘 사이의 반응 곡선 차이를 분석하였다. 시뮬레이션 해석을 통해 tip과 시료와의 거리가 tip 내경의 절반 이하로 가까워지면서 current squeezing 효과를 확인할 수 있었다. 하지만, 시뮬레이션에 반영된 단순 이온 통로 감소에 의한 전류밀도 감소는 실제 실험을 통해 측정된 current squeezing 효과에 비해 훨씬 작은 것으로 측정되었다. 이는 나노 스케일의 매우 좁은 통로에서 이온전도도는 확산계수에 의한 단순 Nernst-Einstein 관계를 따르는 것이 아니라, tip과 시료가 만들어 내는 벽면에서의 유체역학적 유동 저항성을 고려하는 것이 추가로 필요할 것으로 보인다. 향후 이러한 SICM 측정은 전기화학 표면 반응성을 분석하는 SECM (scanning electrochemical microscopy) 측정기술과 통합되어 SECM 측정 한계를 보완될 수 있을 것으로 기대된다. 그렇게 되면, 반도체 배선 공정 및 패키징 공정에 사용되고 있는 다양한 패턴 형상에서 무전해 도금의 촉매 반응과 전기도금에서 유기첨가제 작용의 국부적 차이를 직접적으로 측정하는 것이 가능하게 될 것으로 기대된다.
본 연구에서는 유역의 배수구조를 설명할 수 있는 폭 함수 기반의 Clark 모형을 제안하였다. 시간-면적곡선으로는 지표면과 하천에 대하여 개별적인 동수역학적 특성을 적용한 재조정된 폭 함수를 이용하였다. 선형저수지 추적의 경우 기존의 Clark 모형과 같이 차분화된 형태가 아니라 해석식을 적용하여 수행하였다. 본 연구에서 고려한 주요한 매개변수들로는 지표면평균이송속도 및 하천평균이송속도와 저류상수를 들 수 있다. 실제 매개변수의 추정 과정에는 전역최적화 기법 중의 하나인 SCE-UA 기법을 적용하였다. 또한 Clark 모형으로부터 유도된 순간단위도의 형상은 원점에 대한 1차모멘트와 면적중심에 대한 2, 3차 모멘트로 구분하여 평가하였다. 관측 수문사상의 통계모멘트들과 본 연구에서 추정된 통계모멘트들의 상관계수는 1차모멘트의 경우 0.995, 2차모멘트는 0.993, 3차모멘트는 0.983로 산정되었다. 평균과 분산에 대해서는 추정값과 관측값이 대체로 일치하는 경향을 보여주었다. 그러나 추정된 3차모멘트에 대한 결과는 다소 과대 평가되는 경향을 나타내었다. 제안된 Clark 모형은 순간단위도의 형상을 평균과 분산만을 고려하여 적용한 방법보다 수문곡선의 왜곡 및 첨두좌표의 모의와 관련된 한계점을 개선하였다. 이러한 결과로부터 본 연구에서 제시한 방법론은 배수경로의 이질성과 동적매개변수들의 영향을 적절하게 반영할 수 있음을 확인할 수 있었다. 본 연구에서 고려한 모멘트들의 변동성은 주로 저류상수의 영향이 크게 나타나고 있으며, 지표면평균이송속도보다는 하천평균이송속도가 크게 영향을 미치는 것을 확인할 수 있었다. 이로부터 저류상수와 하천평균이송속도가 Clark 모형으로부터 유도되는 순간단위도의 형상을 결정하는데 지배적인 역할을 하는 것으로 확인되었다. 따라서 두 매개변수는 모형의 적용 과정에서 중요하게 고려되어야 할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.