• Title/Summary/Keyword: Hydrochloric acid

Search Result 632, Processing Time 0.026 seconds

Separation of Valuable Metal from Waste Photovoltaic Ribbon through Extraction and Precipitation

  • Chen, Wei-Sheng;Chen, Yen-Jung;Yueh, Kai-Chieh
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.69-77
    • /
    • 2020
  • With rapid increasing production and installation, recycling of photovoltaic modules has become the main issue. According to the research, the accumulation of waste modules will reach to 8600 tons in 2030. Moreover, Crystalline-silicon (c-Si) Photovoltaic modules account for more than 90% of the waste. C-Si PV modules contain 1.3% of weight of photovoltaic ribbon inside which contains the most of lead, tin and copper in the PV modules, which would cause environmental and humility problem. This study provided a valuable metal separation process for PV ribbons. Ribbons content 82.1% of Cu, 8.9% of Sn, 5.2% of Pb, and 3.1% of Ag. All of them were leached by 3M of hydrochloric acid in the optimal condition. Ag was halogenated to AgCl and precipitated. Cu ion was extracted and separated from Pb and Sn by Lix984N then stripped by 3M H2SO4. The effect of the optimal parameters of extraction was also studied in this essay. The maximum extraction efficiency of Cu ion was 99.64%. The separation condition of Pb and Sn were obtained by adjusting the pH value to 4 thought ammonia to precipitate and separate Pb and Sn. The recovery of Pb and Sn can reach 99%.

A Stdudy on SUS MASK Etching using of FeCl3 (FeCl3를 이용한 SUS MASK 에칭에 관한 연구)

  • Lee, Woo-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.412-418
    • /
    • 2020
  • This paper produced an automatic fluid management system that can accurately control the specific gravity of etching solution(FeCl3), and produced a SUS MASK applied to OLED. The target was set at 0.4 mm in diameter of the hole. As a result of this misconception, the etching speed increased when the specific gravity(S.G) value of FeCl3 was changed from 1.43 to 1.49. And when the weight was 1.49, it was found that the vertical diameter was 0.405 mm, approaching the target. When pressure injection was varied from 2.0kg/cm2 to 3.5kg/cm2, the hole diameter at 3.0 kg/cm2 averaged 0.4mm, matching the target. The characteristics of the change in gravity were analyzed by applying the additive 1.2% and setting the weight at 1.430 by mixing HCl and H2O in FeCl3 and fixing the injection pressure at 3.0 kg/cm2. When the weight changed from 1.460 to 1.469 the etching speed increased from 0.564 to 0.540. When the weight was 1.467, the hole diameter was measured at 0.4 mm and the target was reached.

A Study for Kinetics and Oxidation Reaction of Alcohols by Cr(VI)-4-(Dimethylamino)pyridine (크롬(VI)-4-(Dimethylamino)pyridine에 의한 알코올류의 산화반응과 반응속도에 관한 연구)

  • Kim, Young-Sik;Park, Young-Cho;Kim, Young Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.499-505
    • /
    • 2013
  • Cr(VI)-4-(dimethylamino)pyridine[4-(dimethylamino)pyridinium chlorochromate] was synthesized by the reaction of 4-(dimethylamino)pyridine with chromium trioxide in 6M-HCl, and characterized by IR, ICP. The oxidation of benzyl alcohol using 4-(dimethylamino)pyridinium chlorochromate in various solvents showed that the reactivity increased with the increase of the dielectric constant(${\varepsilon}$), in the order: cyclohexene$H_2SO_4$ solution), 4-(dimethylamino)pyridinium chlorochromate oxidized benzyl alcohol and its derivatives(p-$OCH_3$, m-$CH_3$, H, m-$OCH_3$, m-Cl, m-$NO_2$) smoothly in DMF. Electron-donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant(${\rho}$) was -0.68(303K). The observed experimental data was used to rationalize the hydride ion transfer in the rate-determining step.

Physicochemical Characteristics of Cabbage Kimchi during Fermentation (양배추 김치의 숙성과정 중에 나타나는 이화학적 특성에 관한 연구)

  • Cho, Hee-Sook;Park, Bock-Hee
    • Korean journal of food and cookery science
    • /
    • v.22 no.5 s.95
    • /
    • pp.600-608
    • /
    • 2006
  • The purpose of this study was to investigate the physicochemical characteristics of Cabbage Kimchi with different kinds of jeot-kal. The Cabbage Kimchis were stored at 4${\pm}$1$^{\circ}C$ for 49 days. The pH of all samples of Cabbage Kimchis decreased during fermentation. The total acidity of Cabbage Kimchis increased gradually during fermentation and that of Cabbage Kimchis with different kinds of jeot-kal was higher than that of control. Redox potentials and reducing sugar content decreased gradually during fermentation. Total vitamin C content of Cabbage Kimchis with different kinds of jeot-kal was much higher than that of control. In color measurement, the lightness value decreased gradually, whereas the redness and yellowness values increased gradually during fermentation. The content of hot water soluble pectin (HWSP) decreased as the fermentation proceeded, but that of hydrochloric acid soluble pectin (HCISP) and sodium hexametaphosphate soluble pectin (NaSP) increased.

Introduction to Electrochemical Quartz Crystal Microbalance Technique for Leaching Study of Metals (금속 침출연구를 위한 전기화학적 미소수정진동자저울 기술 소개)

  • Kim, Min-seuk;Chung, Kyeong Woo;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • Electrochemical Quartz Crystal microbalance is a tool that is capable of measuring nanogram-scale mass change on electrode surface. When applying alternating voltage to the quartz crystal with metal electrode formed on both sides, a resonant frequency by inverse piezoelectric effect depends on its thickness. The resonant frequency changes sensitively by mass change on its electrode surface; frequency increase with metal dissolution and decrease with metal deposition on the electrode surface. The relationship between resonant frequency and mass change is shown by Sauerbrey equation so that the mass change during metal dissolution can be measured in real time. Especially, it is effective in the case of reaction mechanism and rate studies accompanied by precipitation, volatilization, compound formation, etc. resulting in difficulties on ex-situ AA or ICP analysis. However, it should be carefully considered during EQCM experiments that temperature, viscosity, and hydraulic pressure of solution, and stress and surface roughness can affect on the resonant frequency. Application of EQCM was shown as a case study on leaching of platinum using aqueous chlorine for obtaining activation energy. A platinum electrode of quartz crystal oscillator with 1000 Å thickness exposed to solution was used as leaching sample. Electrogenerated chlorine as oxidant was purged and its concentration was controlled in hydrochloric acid solution. From the experimental results, platinum dissolution by chlorine is chemical reaction control with activation energy of 83.5 kJ/mol.

Changes in Firmness, Mineral Composition and Pectic Substances of Mume(Prunus mume Sieb. et Zucc) Fruits during Maturation (매실의 성숙중 경도, 무기성분 및 펙틴질의 변화)

  • 차환수;박용곤;박정선;박미원;조재선
    • Food Science and Preservation
    • /
    • v.6 no.4
    • /
    • pp.488-494
    • /
    • 1999
  • The changes in firmness, mineral compositions and pectic substances of Mume(Prunus mume Sieb. et Zucc) fruits during maturation were determined. An average weight of the fruits in 92days after full bloom was increased during maturation proceeded up to the range of 212∼232%, as compared with that of 64days. The rate of weight increase of 'Ohshuku' fruits was 257%, and it was highest among four varieties. The ratio of stone to flesh weight was decreased, but the diameter of the flesh of fruits was increased during maturation. The firmness of 'Koume' fruits was rapidly decreased from 78days after full bloom. Three varieties, except 'Koume' fruits, showed similar changes in firmness. Potassium content of fruits was 85%. Calcium and Mg were decreased as the flesh of fruits became plump. The ratios of hydrochloric acid-soluble pectin(HSP) , water-soluble pectin(WSP), sodium hexamethaphosphate-soluble pectin(PSP), and sodium hydroxode-soluble pectin(SSP) contents to the total pectin content of the fruits were 66∼76, 8.4∼19.7, 5.4∼7.5 and 7.1∼8.3%, respectively. The total pectin content was increased up to 71days after full bloom, but it was decreased thereafter. Also, a significant increase of WSP and a decrease of HSP were observed during the softening process of fruits.

  • PDF

Effect of Ultrasound Irradiation during Cementation Process for Recovery of Iridium (이리듐 회수를 위한 시멘테이션 공정 중 초음파 조사의 영향)

  • Kim, Seunghyun;Kim, Young-Jin;Seo, Jun-Hyung;Cho, Jin-Sang;Cho, Kye-Hong;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.61-67
    • /
    • 2021
  • This work investigated the cementation of iridium from iridium-containing hydrochloric acid leachate. Zinc powder was used as the reducing agent, and the effects of the stoichiometric ratio of Zn/Ir, initial Ir concentration, initial pH, reaction time, and ultrasound irradiation on iridium recovery were investigated. When only the stirrer was used for cementation, the iridium recovery increased with the addition amount of zinc, and the recovery of about 70% at 40 times the stoichiometric ratio of Zn/Ir. In contrast, when employing ultrasonic irradiation with stirring, the recovery of iridium decreased at 20 times or less the stoichiometric amount of zinc. The recovery of iridium increased at 40 times the stoichiometric ratio of Zn/Ir. This result may be due to the ionization of zinc and re-dissolution of iridium during the ultrasound irradiation treatment. When a combination of ultrasonic irradiation and stirring was used for cementation, the iridium recovery increased by more than 27% compared to that when using only the stirrer. It was possible to recover 99% of iridium under the following conditions: reaction time, 60 min; initial pH, 0.01; volume of leachate, 100 mL; 1770 ppm Ir, 40 times the stoichiometric ratio of Zn/Ir.

Solvent Extraction of Li(I) from Weak HCl Solution with the Mixture of Neutral Extractants Containing FeCl3 (FeCl3를 함유한 중성추출제의 혼합용매로 약한 염산용액으로부터 리튬(I)의 용매추출)

  • Xing, Weidong;Lee, Seah;Lee, Manseung
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.53-58
    • /
    • 2018
  • Solvent extraction of Li(I) from weak HCl solution was investigated by the mixture of TBP/MIBK with other neutral extractants such as Cyanex 923, TOPO and TOP. The TBP/MIBK organic phase was loaded with 0.1 M $FeCl_3$ at different HCl concentrations (1-9 M). Extraction of Li(I) from weak HCl solution is related to the stability of $FeCl_3$ in the organic mixture. As HCl concentration increased in preparing the loaded TBP phase, the stripping percentage of Fe(III) during the extraction of Li(I) became reduced and thus Li(I) could be extracted by ion exchange reaction with hydrogen ion in the organic. The concentration of TBP in the extractant mixture affected the stability of $FeCl_3$. Compared to TBP, Fe(III) was easily stripped from the loaded MIBK and thus no Li(I) was extracted by the mixture with MIBK. The nature of neutral extractant with TBP/MIBK showed little difference in the extraction of Li(I) and stripping of Fe(III).

Effect of various environmental factors such as concentration of NaClO2, relative humidity, temperature, and time on the production of gaseous chlorine dioxide (다양한 환경조건(NaClO2 농도, 상대습도, 온도, 시간)에 따른 이산화염소 기체의 발생량 변화)

  • Lee, Jeongmin;Lee, Nam-Teak;Ryu, Jee-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.404-409
    • /
    • 2019
  • This study was performed to determine the optimum conditions for the production of gaseous chlorine dioxide ($ClO_2$) from aqueous $ClO_2$ (HCl+$NaClO_2$). When 1 N HCl was reacted with various concentrations of $NaClO_2$ (50,000-500,000 mg/mL), the highest concentration (695 mg/L) of gaseous $ClO_2$ was obtained from the aqueous $ClO_2$ containing $100,000{\mu}g/mL$ $NaClO_2$. Next, the effects of relative humidity (RH; 43, 85, and 100%) and temperature (4, 12, and $25^{\circ}C$) on the production of gaseous $ClO_2$ were investigated. It was observed that the concentration of gaseous $ClO_2$ was increased as RH was decreased, or the temperature was increased. Finally, it was confirmed that the amount of gaseous $ClO_2$ was highly correlated ($R^2=0.9546-0.9992$) with the volume of aqueous $ClO_2$. The results of this study provide useful information for designing a sanitization program using gaseous $ClO_2$ under various environmental conditions.

A Study on the Chemical Resistance Performance of Injection Type Leakage Repair Materials used in Crack Parts of Concrete Structures under the Contaminated Groundwater Environment (오염된 지하수 환경 하의 콘크리트 구조물 균열부위에 사용되는 주입형 누수보수재료의 화학저항성능 시험평가 연구)

  • Kim, Soo-Yeon;Yoo, Jae-Yong;Kim, Byung-Il;Oh, Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.411-419
    • /
    • 2019
  • Underground concrete structures are constructed under a geographical environment called underground and exposed to various environments that promote deterioration. Among them, groundwater promotes deterioration of underground concrete structures due to contaminated water from the ground. In this study, the chemical resistance performance test evaluation of five different receptors for a total of 15-type leakage repair materials of five series was conducted to determine the chemical stability of the leakage repair material used in the crack area. The results show a general increase and decrease in most chemical receptors, but the biggest increase and decrease was shown in acrylic systems, which were found in sodium chloride and sodium hydroxide, and epoxy was found in hydrochloric acid. The cement system is showing a lot of increase and decrease in sodium chloride. It is expected that the results of these studies will be used as a basis for chemical stabilization in the development of new materials.