• Title/Summary/Keyword: Hydrocarbon reforming

Search Result 64, Processing Time 0.03 seconds

kW-class Diesel Autothermal Reformer with Microchannel Catalyst for Solid Oxide Fuel Cell System (고체산화물 연료전지 시스템을 위한 kW급 마이크로채널 촉매 디젤 자열 개질기)

  • Yoon, Sang-Ho;Kang, In-Yong;Bae, Gyu-Jong;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.558-565
    • /
    • 2008
  • Solid oxide fuel cell(SOFC) has a higher fuel flexibility than low temperature fuel cells, such as polymer electrolyte fuel cell(PEMFC) and phosphoric acid fuel cell(PAFC). SOFCs also use CO and $CH_4$ as a fuel, because SOFCs are hot enough to allow the CH4 steam reformation(SR) reaction and water-gas shift(WGS) reaction occur within the SOFC stack itself. Diesel is a good candidate for SOFC system fuel because diesel reformate gas include a higher degree of CO and $CH_4$ concentration than other hydrocarbon(methane, butane, etc.) reformate gas. Selection of catalyst for autothermalr reforming of diesel was performed in this paper, and characteristics of reforming performance between packed-bed and microchannel catalyst are compared for SOFC system. The mesh-typed microchannel catalyst also investigated for diesel ATR operation for 1kW-class SOFC system. 1kW-class diesel microchannel ATR was continuously operated about 30 hours and its reforming efficiency was achieved nearly 55%.

A Comparative Study for Steam-Methane Reforming Reaction Analysis Model (수증기-메탄개질반응 해석모델의 비교연구)

  • Choi, Chong-Gun;Chung, Tae-Yong;Nam, Jin-Hyun;Shin, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.497-503
    • /
    • 2008
  • Hydrogen is considered as a fuel of the future for its renewability and environmental compatibility. The reforming of hydrocarbon fuels is currently the most important source of hydrogen, which is expected to continue for next several decades. In this study, extensive CFD simulations on the steam-methane reforming process were conducted to study the performance of four reaction models, i.e. three Arrhenius-type models and a user-defined function (UDF) model. The accuracies of different reaction models for various operating temperatures and steam carbon ratios (SCRs) were evaluated by comparing their CFD results with zero-dimensional intrinsic model of Xu and Froment. It was found that the UDF model generally produced more accurate results than Arrhenius-type models. However, it was also shown that Arrhenius-type models could be made sufficiently accurate by choosing appropriate reaction coefficients, and thus could also be useful for the simulation of the steam-methane reforming process.

Effect of oxygen distribution for hot spot and carbon deposition minimization in a methane autothermal reforming reactor

  • Lee, Shin-Ku;Bae, Joong-Myeon;Kim, Yong-Min;Park, Joong-Uen;Lim, Sung-Kwang
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1996-2000
    • /
    • 2008
  • In autothermal reforming reaction, oxygen to carbon ratio (OCR) and steam to carbon ratio (SCR) are significant factors, which control temperature and carbon deposition into the reactor. The OCR is more sensitive than the SCR to affect the temperature distribution and reforming efficiency. In conventional operation, hydrocarbon fuel, steam, and oxygen was homogeneously mixed and injected into the reactor in order to get hydrogen-rich gas. The temperature was abruptly raised due to fast oxidation reaction in the former part of the reactor. Deactivation of packed catalysts can be accelerated there. In the present study, therefore, the effect of the oxygen distribution is introduced and investigated to suppress the carbon deposition and to maintain the reactor in the mild operating temperature (e.g., $700{\sim}800^{\circ}C$). In order to investigate the effect numerically, the following models are adopted; heterogeneous reaction model and two-medium model for heat balance.

  • PDF

Theoretical Analyses of Autothermal Reforming Methanol for Use in Fuel Cell

  • Wang Hak-Min;Choi Kap-Seung;Kang Il-Hwan;Kim Hyung-Man;Erickson Paul A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.864-873
    • /
    • 2006
  • As fuel cells approach commercialization, hydrogen production becomes a critical step in the overall energy conversion pathway. Reforming is a process that produces a hydrogen-rich gas from hydrocarbon fuels. Hydrogen production via autothermal reforming (ATR) is particularly attractive for applications that demand a quick start-up and response time in a compact size. However, further research is required to optimize the performance of autothermal reformers and accurate models of reactor performance must be developed and validated. The design includes the requirement of accommodating a wide range of experimental set ups. Factors considered in the design of the reformer are capability to use multiple fuels, ability to vary stoichiometry, precise temperature and pressure control, implementation of enhancement methods, capability to implement variable catalyst positions and catalyst arrangement, ability to monitor and change reactant mixing, and proper implementation of data acquisition. A model of the system was first developed in order to calculate flowrates, heating, space velocity, and other important parameters needed to select the hardware that comprises the reformer. Predicted performance will be compared to actual data once the reformer construction is completed. This comparison will quantify the accuracy of the model and should point to areas where further model development is required. The end result will be a research tool that allows engineers to optimize hydrogen production via autothermal reformation.

Reforming of Hydrocarbon Fuel Using Water Jet Plasma (Water Jet 플라즈마를 이용한 탄화수소 연료 개질)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.949-954
    • /
    • 2006
  • The purpose of this paper is to develop water jet plasma reactor and investigate the optimal condition of the syngas production by reforming of hydrocarbon fuel. Fuel used was propane and plasma was generated by arc discharge on water jet surface. Discharge slipping over the water surface has a number of advantages such as a source of short-wave and UV radiation, and it can be used for biological and chemical purification of water. Parametric screening studies were conducted, in which there were the variations of power ($0.18{\sim}0.74$ kW), water jet flow rate($38.4{\sim}65.6$ mL/min), electrode gap($5{\sim}15$ mm) and treatment time($2{\sim}20$ min). When the variations were 0.4 kW, 53.9 mL/min, 10 mm and 20 min respectively, result of maximum $H_2$ concentration was 61.6%, intermediates concentration were 6.1% and propane conversion rate was 99.8%.

PROCESS OPTIMIZATION OF METHANE REFORMING IN ARC JET (아크젯 플라즈마에서의 메탄개질의 최적화)

  • Hwang, Na-Kyung;Lee, Dae-Hoon;Song, Young-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.266-271
    • /
    • 2006
  • Characteristic of partial oxidation of methane using arc-jet plasma by AC power is investigated. Arc-jet reactor used in this work is slightly modified from typical arc jet reactor so that it can make and sustain stable state of plasma. Methane conversion, selectivity of chemicals such as hydrogen and hydrocarbon materials in the product are analyzed. Parametric approach on the performance of the reactor or detail on the partial oxidation process is carried with $O_2/C$ ratio as parameter. In addition to the results, SED and arc length is changed to understand the effect of current-voltage correlation on the reforming performance and relative role of thermal process.

  • PDF

The Effect of DBD Plasma on Fuel Reforming and on the Characteristics of Laminar Flames (DBD 플라즈마에 의한 연료개질 및 층류 화염 특성 변화)

  • Kim, Eungang;Park, Sunho;Song, Young-Hoon;Lee, Wonnam
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.195-198
    • /
    • 2014
  • $Fuel/N_2$ and fuel/air mixtures were treated with non-thermal DBD plasma and the changes in characteristics of laminar diffusion flame have been observed. Flame of $Fuel/N_2$ mixture generated more soot under plasma condition while less amount of soot was formed from fuel/air mixture flame. Luminescence spectrum and gas chromatography results confirmed that plasma energy converts a fraction of fuel molecules into radicals, which then form $C_2$, $C_3$, $C_4$ and higher hydrocarbon under no oxygen condition or turn into CO, $CO_2$ and $H_2O$ when oxygen is present.

  • PDF

Development of Ni-based Catalyst for Hydrogen Production with Steam Reforming of Light Hydrocarbon (저급탄화수소 수증기 개질에 의한 수소 제조용 니켈계 촉매개발)

  • Kim, Dae-Hyun;Awate, Shobhana;Gang, Jeong-Sik;Lee, Byung-Gwon;Choi, Jae-Suk;Kim, Myung-Jun;Hong, Suk-In;Moon, Dong-Ju
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.387-390
    • /
    • 2008
  • Ni/MgAl 촉매상에서 LPG의 수증기 개질반응을 반응온도 $700{\sim}800^{\circ}C$, 공간속도 $20,000h^{-1}$, 수증기/탄소 비율 $1.0{\sim}3.0$인 조건으로 대기압하에서 수행하였다. 본 연구에서 사용된 촉매들은 공침법으로 제조하였으며, 하이드로탈사이트 구조에서 Ni-MgO 구조로 변환되는 과정에서 활성금속인 니켈이 고분산되는 장점을 지니고 있다. 제조된 촉매는 함침법으로 제조된 촉매보다 활성이 잘 유지되었으며 탄소침적에 대한 내구성 또한 향상되었으나 완벽하게 해결되지는 못하였다. 따라서 이와 같은 문제점을 해결하기 위해 귀금속이 modified된 Ni/MgAl 촉매를 제조하고 반응 특성을 비교하였다. Rh-Ni/MgAl 촉매는 LPG 수증기 개질 반응에서 1024시간동안 활성이 유지됨을 확인하였을 뿐만 아니라 탄소침적 또한 발생하지 않음을 확인하였다.

  • PDF

Fuel-Flexible Anode Architecture for Solid Oxide Fuel Cells

  • Hwan Kim;Sunghyun Uhm
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.226-240
    • /
    • 2023
  • This paper provides an overview of the trends and future directions in the development of anode materials for solid oxide fuel cells (SOFCs) using hydrocarbons as fuel, with the aim of enabling a decentralized energy supply. Hydrocarbons (such as natural gas and biogas) offer promising alternatives to traditional energy sources, as their use in SOFCs can help meet the growing demands for energy. We cover several types of materials, including perovskite structures, high-entropy alloys, proton-conducting ceramic materials, anode on-cell catalyst reforming layers, and anode functional layers. In addition, we review the performance and long-term stability of cells based on these anode materials and assess their potential for commercial manufacturing processes. Finally, we present a model for enhancing the applicability of fuel cell-based power generation systems to assist in the realization of the H2 economy as the best practice for enabling distributed energy. Overall, this study highlights the potential of SOFCs to make significant progress toward a sustainable and efficient energy future.

Development of Ni-based Catalyst for Hydrogen Production with Steam Reforming of Light Hydrocarbon (저급탄화수소 수증기 개질에 의한 수소 제조용 니켈계 촉매개발)

  • Kim, Dae-Hyun;Lee, Sang-Deuk;Lee, Byung-Gwon;Kim, Myung-Jun;Hong, Suk-In;Moon, Dong-Ju
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.80-87
    • /
    • 2008
  • Steam reforming of LPG was investigated over spc-Ni/MgAl catalyst in a temperature range of $600{\sim}850^{\circ}C$, feed molar ratio of $H_2O/C=1.0{\sim}3.0$, space velocity of $10,000{\sim}90,000h^{-1}$ and at atmospheric pressure. spc-Ni/MgAl catalyst was prepared by a co-precipitation method, whereas Ni/MgO and $Ni/Al_2O_3$ catalysts were prepared by an incipient wetness method. The characteristics of catalysts were analyzed by N2 Physisorption, CO chemisorption, XRD, TOF-SIMS, SEM and TEM techniques. The Ni/MgO and $Ni/Al_2O_3$ catalysts were deactivated by the formation of carbon. However, the spc-Ni/MgAl catalyst showed higher conversion and $H_2$ selectivity than the other catalysts, even though carbon was formed on the surface of the catalyst during the reaction under the tested reaction conditions.

  • PDF