• Title/Summary/Keyword: Hydrocarbon Emission

Search Result 212, Processing Time 0.027 seconds

Precipitation, Resolubilization and Luminescent Properties of Tris (2,2$^\prime$-diimine)Ruthenium(II) Complexes in Premicellar Anionic Surfactant Solutions

  • Park, Joon-Woo;Kim, Sung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.5
    • /
    • pp.317-322
    • /
    • 1988
  • Premicellar precipitation, resolubilization and luminescing behaviors of $RuL_3^{2+}$ (L = bpy, phen, $Me_2bpy$) in aqueous alkylsulfate and sulfonate solutions were studied. Addition of the anionic surfactants to $RuL_3\;^{2+}$ solutions caused initial precipitation which was redissolved by further addition of the surfactants. The apparent solubility products $K_{sp}$'s of the precipitates were evaluated assuming 1:2 salt formation. The values were smaller as the ligand is more hydrophobic and the length of hydrocarbon chain of the surfactant is longer. The $K_{sp}$ values for L = bpy were constant over wide surfactant concentration range. However, those for L = $Me_2bpy$ and also for phen, but to less extent, increased with the surfactant concentration. The resolubilization of 1:2 salts was followed by red-shift of emission band and extensive emission quenching above critical concentration of the surfactants. The critical concentration was lower for more hydrophobic surfactant. For L = $Me_2bpy$, the blue-shifted emission band with enhanced emission intensity was observed in intermediate surfactant concentration region. The high ionic strength of media prevented the precipitate formation, but facilitated the red-shift of the emission bands. The results support that the precipitate is dissolved by accretion of surfactant anions to the salts to form water-soluble surfactant-rich $RuL_3$-surfactant anionic species. These species appeared to aggregate cooperatively to produce large clusters which exhibited the red-shifted emission.

Measurement of HC Concentration near Spark Plug and Combustion Analysis (스파크플러그 주위의 HC 농도 측정 및 연소특성 분석)

  • 조한승;송해박;이종화;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.212-219
    • /
    • 1998
  • Unburned hydrocarbon is a key contributor to both the fuel economy and emissions of automotive engine. Cyclic variation of HC emission is of importance, especially during throttle transients. The real time measurement of hydrocarbon is particularly important to obtain a better understanding of the mechanisms for combustion and emissions, especially during cold start and throttle transient condition. This paper reports the cycle resolved measurement technique of unburned hydrocarbons to quantify rapid changes of in-cylinder concentration in the vicinity of spark plug by using the Fast Response Flame Ionization Detector(FRFID). While this instrument actually measures fuel concentration, its results can be indicative of the AFR behaviour. In order to understand the rapid change of hydrocarbons with cylinder pressure, it is necessary to study the response time delay of the system, including the time associated with gas transportation to FID. And signal from FRFID is correlated with cylinder pressure data to relate changes in mixture preparation to the classic analysis, such as indicated mean effective(IMEF) and ignition delay, etc.

  • PDF

An Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine According to Variation of the Injection Timing (분사시기의 변화에 따른 제어자발화 가솔린기관의 배기특성)

  • Kim, H.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.5-10
    • /
    • 2004
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine emission characteristics under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, $150\;to\;180^{\circ}C$ in the inlet-air temperature, and $80^{\circ}$ BTDC to $20^{\circ}$ ATDC in the injection timing. A controlled auto-ignition gasoline engine which has the ultra lean-burn with self-ignition of gasoline fuel can be achieved by heating inlet air. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxides had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

  • PDF

An Experimental Study on the Emission Reduction of Duel-Fuel Engine by CNG (디젤기관에서 CNG혼소에 의한 배출가스 저감에 관한 실험적 연구)

  • 한영출;엄명도;오용석;이성욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.213-218
    • /
    • 1997
  • CNG dual fuel engine for heavy duty diesel engine has been equipped to a Korean bus engine and tested to compare th engine performance and the emission characteristics with the existing diesel fueled engine. The results are summarized as follows. Diesel fueled engine has the fuel injection timing of BTDC17°. The injection timing of CNG modified engine is retarded to BTDC14° for reduction of NOx. Performance optimization has been carried out to have engine power equivalent to or better than the diesel fueled engine. Smoke is decreased by 85% by Korean smoke 3 mode test. By 6 mode test CO is increased by 313% and THC is increased by 1407%. NOx is decreased by 27%. Even though THC is increased very much, it's not too serious problem since CO and THC emission of diesel engine are very little compared to gasoline engine and THC don't give bad effect on human health. But the reduction technologies of CO and THC need to be considered.

  • PDF

A Study for the Performance Improvement by Fumigation LPG on Diesel Engine using a Used Frying Oil (폐식용유를 사용한 디젤기관에서의 LPG 공급에 의한 성능개선에 관한 연구)

  • 조기현;황의현;백태실;정형길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.16-24
    • /
    • 2000
  • In this study, using frying oil, performance of engine and emission concentration were compared with the case of using diesel oil. And results are as follows. 1. Engine torque and brake horse power indicate nearly same value as the case of using diesel fuel. 2. Temperature of exhaust gas was increased with as high engine speed and load. 3. To reduce concentration of hydrocarbon, it is effective to operate using used frying oil in low engine speed and load, and adding LPG in high engine speed and load. 4. Concerning with concentration of carbon mono oxide and smoke emission, it was assured, that as engine load increased, lower concentration emitted in case of utilizing mixed fuel than that of utilizing pure diesel fuel.

  • PDF

Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions

  • Cho, Haeng-Muk;He, Bang-Quan
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.95-101
    • /
    • 2009
  • Natural gas is a promising alternative fuel of internal combustion engines. In this paper, the combustion and emission characteristics were investigated on a natural gas engine at two different fuel injection timings during the intake stroke. The results show that fuel injection timing affects combustion processes. The optimum spark timing (MBT) achieving the maximum indicated mean effective pressure (IMEP) is related to fuel injection timing and air fuel ratio. At MBT spark timing, late fuel injection timing delays ignition timing and prolongs combustion duration in most cases. But fuel injection timing has little effect on IMEP at fixed lambdas. The coefficient of variation (COV) of IMEP is dependent on air fuel ratio, throttle positions and fuel injection timings at MBT spark timing. The COV of IMEP increases with lambda in most cases. Late fuel injection timings can reduce the COV of IMEP at part loads. Moreover, engine-out CO and total hydrocarbon (THC) emissions can be reduced at late fuel injection timing.

An Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine (제어자발화 가솔린기관의 배기 특성)

  • Kim, H.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.5-10
    • /
    • 2009
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is cooled by the water of a specially designed coolant passage. The engine emission characteristics were investigated under the wide range of operating conditions such as 32 to 63 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, and 150 to $180^{\circ}C$ in the inlet air temperature. The ultra lean-burn can be achieved by the auto-ignition of gasoline fuel due to the heated inlet air in the compression ignition gasoline engine. It is confirmed that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide can be significantly reduced by CAI combustion compared with the combustion of a conventional spark ignition engine.

  • PDF

Combustion and Exhaust Emission Characteristics of Bio-Ethanol Fuel(E100) in SI Engine (SI 엔진에서 바이오에탄올 연료(E100)의 연소 및 배기특성)

  • Ha, Sung-Yong;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.582-588
    • /
    • 2008
  • An experimental investigation was conducted to investigate the effect of Bio-ethanol fuel on the engine performance and exhaust emission characteristics under various engine operating conditions. To investigate the effect of bio-ethanol fuel, the commercial 1.6L SI engine equipped with 4 cylinder was tested on EC dynamometer. The engine performance including brake torque, brake specific fuel consumption, and barke specific energy consumption of bio-ethanol fuel was compared to those obtained by pure gasoline. Furthermore, the exhaust emissions were analyzed in terms of regulated exhaust emissions such as unburned hydrocarbon, oxides of nitrogen, and carbon monoxide.Result of this work shows that the effect of blending of ethanol to gasoline caused drastic decrease of emissions under various operating conditions. Also, improved engine performance such as brake torque and brake power were indicated for bio-ethanol fuel.

Exhaust Emissions Characteristics on the SI Engine according to the Air-Fuel Mixture with Ozone (혼합기 오존 첨가에 따른 SI기관의 배기배출물 특성)

  • Lee, B.H.;Yi, C.S.;Lee, Y.H.;Lee, C.K.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.5-10
    • /
    • 2006
  • In a conventional and lean operating engine, the state of mixture is very important in the combustion and emission characteristics. Lean operation is known to decrease the formation while maintaining a good fuel economy, but the unstable operation due to misfire and erratic combustion prevents engines from being operated at very lean mixtures, so both combustion rates and exhaust emission formation need to be satisfied comparably. In this study, it is designed and experimented the modified engine, and analyzed the combustion and exhaust emission according to the change of engine speed and with adding ozone. The conclusions were drawn out and enumerated as follows. 1. At the experimental result of automobile diesel engine, it has been verified that the formation of particulate matter(PM) gas is able to be lower with the addition of optimum quantities of ozone. 2. Carbon monoxide(CO) was formed by the lack of oxygen and the thermal dissociation in the combustion process. Therefore, with the change of swirl valve's position and addition of oxygen and ozone, CO formation was decreased by the increasing of excessive O2, but it was increased by the temperature of combustion gas growing higher. As a result of the two effects, CO formation was decreased in this study. 3. Hydrocarbon(HC) was formed by the lack of O2, and the flow of mixture in cylinder. According to opening of the swirl valve and adding the oxygen and ozone, hydrocarbon gas was decreased by 20%, 9%, and 27.5%, respectively. 4. Nitric oxides($NO_x$) was strongly affected by the combustion gas temperature. As a result of respectively experimental conditions, $NO_x$ formation was increased about 20% due to (be the) high(er) combustion gas temperature.

  • PDF

Effects of Port Fuel Injection Characteristics upon HC Emission in SI Engines (연료 분사 특성이 가솔린 엔진 HC 배출특성에 미치는 영향)

  • Woo, Young-Min;Bae, Choong-Sik;Lee, Yong-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.796-801
    • /
    • 2001
  • During cold operation period, fuel injection system directly contributes the unburned hydrocarbon formation in spark ignition engines. The relationship between injection parameters and HC emission behavior was investigated through a series of experiments. Spray behavior of port fuel injectors was characterized through a quantitative evaluation of mass concentration of liquid fuel by a patternator and PDA. 6-hole injector was found to produce finer spray than single hole one. Using a purpose-built test rig, the wall wetting fuel was measured, which was mostly affected by wall temperature. Varying coolant temperature($20{\sim}80^{\circ}C$), HC emissions were measured in a production engine. With respect to the different types of injectors, HC emission was also measured. In the 6-hole injector application, the engine produced less HC emission in low coolant temperature region. Though it produces much more amount of wetting fuel, it has the advantages of finer atomization quality. In high coolant temperature region, there was little effect between different types of injectors. The control schemes to reduce HC emissions during cold start could be suggested from the findings that the amount of fuel supply and HC emission could be reduced by utilizing fine spray and high intake wall temperature.

  • PDF