• Title/Summary/Keyword: HydroKorea

Search Result 1,488, Processing Time 0.025 seconds

Verification and Verification Method of Safety Class FPGA in Nuclear Power Plant (원자력발전소의 안전등급 FPGA 확인 및 검증 방법)

  • Lee, Dongil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.464-466
    • /
    • 2019
  • Controllers used in nuclear power plants require high reliability. A controller including a Field Programmable Gate Array (FPGA) and a Complex Programmable Logic Device (referred to hereinafter as FPGA) has been applied to many Nuclear Power Plants (NPP) in the past, including the APR1400 (Advanced Power Reactor 1400), a Korean digital nuclear power plant. Initially, the FPGA was considered as a general IC (Integrated Circuit) and verified only by device verification and performance testing. In the 1990s, research on FPGA verification began, and until the FPGA became a chip, it was regarded as software and the software Verification and Validation (V&V) using IEEE 1012-2004 was implemented. Currently, IEC 62566, which is a European standard, has been applied for a lot of verification. This method has been evaluated as the most sensible method to date. This is because the method of verifying the characteristics of SoC (System on Chip), which has been a problem in the existing verification method, is sufficiently applied. However, IEC 62566 is a European standard that has not yet been adopted in the United States and maintains the application of IEEE 1012 for FPGA. IEEE 1012-2004 or IEC 62566 is a technical standard. In practice, various methods are applied to meet technical standards. In this paper, we describe the procedure and important points of verification method of Nuclear Safety Class FPGA applying SoC verification method.

  • PDF

A Study on Design of Wind Blade with Rated Capacity of 50kW (50kW 풍력블레이드 설계에 관한 연구)

  • Kim, Sang-Man;Moon, Chae-Joo;Jung, Gweon-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.485-492
    • /
    • 2021
  • The wind turbines with a rated capacity of 50kW or less are generally considered as small class. Small wind turbines are an attractive alternative for off-grid power system and electric home appliances, both as stand-alone application and in combination with other energy technologies such as energy storage system, photovoltaic, small hydro or diesel engines. The research objective is to develop the 50kW scale wind turbine blades in ways that resemble as closely as possible with the construction and methods of utility scale turbine blade manufacturing. The mold process based on wooden form is employed to create a hollow, multi-piece, lightweight design using carbon fiber and fiberglass with an epoxy based resin. A hand layup prototyping method is developed using high density foam molds that allows short cycle time between design iterations of aerodynamic platforms. A production process of five blades is manufactured and key components of the blade are tested by IEC 61400-23 to verify the appropriateness of the design. Also, wind system with developed blades is tested by IEC 61400-12 to verify the performance characteristics. The results of blade and turbine system test showed the available design conditions for commercial operation.

Quantitative impacts of climate change and human activities on the watershed runoff variation of the Geum River basin (기후변화 및 인간 활동이 금강 유역의 중권역 유출량 변동에 미치는 영향의 정량적 평가)

  • Oh, Mi Ju;Kim, Dongwook;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.381-392
    • /
    • 2023
  • Precipitation, runoff, and evapotranspiration are changing worldwide due to climate change and human activities. Because watershed runoff is an important component of the hydrological cycle, it is important to investigate the changes in watershed runoff for water resources management. This study collected observed data of runoff, precipitation, temperature, and evapotranspiration in the Geum River basin as well as their synthetic data according to Representative Concentration Pathways (RCP) scenarios, investigated the trend of hydro-meteorological variables using the Mann-Kendall test, and quantitatively evaluated the effects of climate change and human activities on the watershed runoff using the climate elasticity approach and the Budyko framework. The results indicated that the relative contribution of climate change and human activity to changes in runoff varies from region to region. For example, the watershed with the greatest contribution from climate change and human activity were the Yongdam Dam (#3001) basin and the Daecheong Dam (#3008) basin, respectively. Future climate change showed an increase in precipitation and temperature in both RCP 4.5 and 8.5 scenarios, resulting in changes in runoff in the Geum River basin from 44.8% to 65.5%, respectively. We concluded that the effect on watershed runoff can be separated into climate change and human activities, which will be important information in establishing sustainable water resource management plans.

Horizontal-Axis Screw Turbine as a Micro Hydropower Energy Source: A Design Feasibility Study (마이크로 수력 에너지원의 수평축 스크류 터빈 : 설계 타당성 연구)

  • SHAMSUDDEEN, MOHAMED MURSHID;KIM, SEUNG-JUN;MA, SANG-BUM;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.1
    • /
    • pp.95-104
    • /
    • 2022
  • Micro hydropower is a readily available renewable energy source that can be harvested utilizing hydrokinetic turbines from shallow water canals, irrigation and industrial channel flows, and run-off river stream flows. These sources generally have low head (<1 m) and low velocity which makes it difficult to harvest energy using conventional turbines. A horizontal-axis screw turbine was designed and numerically tested to extract power from such low-head water sources. The 3-bladed screw-type turbine is placed horizontally perpendicular to the incoming flow, partially submerged in a narrow water channel at no-head condition. The turbine hydraulic performances were studied using Computational Fluid Dynamics models. Turbine design parameters such as the shroud diameter, the hub-to-shroud ratios, and the submerged depths were obtained through a steady-state parametric study. The resulting turbine configuration was then tested by solving the unsteady multiphase free-surface equations mimicking an actual open channel flow scenario. The turbine performance in the shallow channel were studied for various Tip Speed Ratios (TSR). The highest power coefficient was obtained at a TSR of 0.3. The turbine was then scaled-up to test its performance on a real site condition at a head of 0.3 m. The highest power coefficient obtained was 0.18. Several losses were observed in the 3-bladed turbine design and to minimize losses, the number of blades were increased to five. The power coefficient improved by 236% for a 5-bladed screw turbine. The fluid losses were minimized by increasing the blade surface area submerged in water. The turbine performance was increased by 74.4% after dipping the turbine to a bottom wall clearance of 30 cm from 60 cm. The final output of the novel horizontal-axis screw turbine showed a 2.83 kW power output at a power coefficient of 0.63. The turbine is expected to produce 18,744 kWh/year of electricity. The design feasibility test of the turbine showed promising results to harvest energy from small hydropower sources.

Study on security framework for cyber-hacking control facilities (제어시설 사이버공격 대응을 위한 사이버보안 프레임워크 (Framework) 연구)

  • Lee, Sang-Do;Shin, Yongtae
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.4
    • /
    • pp.285-296
    • /
    • 2018
  • Among many hacking attempts carried out in the past few years, the cyber-attacks that could have caused a national-level disaster were the attacks against nuclear facilities including nuclear power plants. The most typical one was the Stuxnet attack against Iranian nuclear facility and the cyber threat targeting one of the facilities operated by Korea Hydro and Nuclear Power Co., Ltd (Republic of Korea; ROK). Although the latter was just a threat, it made many Korean people anxious while the former showed that the operation of nuclear plant can be actually stopped by direct cyber-attacks. After these incidents, the possibility of cyber-attacks against industrial control systems has become a reality and the security for these systems has been tightened based on the idea that the operations by network-isolated systems are no longer safe from the cyber terrorism. The ROK government has established a realistic control systems defense concept and in the US, the relevant authorities have set up several security frameworks to prepare for the threats. This paper presented various cyber security attack cases and their scenarios against control systems, along with the analysis of countermeasures for them. Though this task, we attempt to identify the items that need to be considered when designing a domestic security framework to improve security and secure stability.

Evaluating the contribution of calculation components to the uncertainty of standardized precipitation index using a linear mixed model (선형혼합모형을 활용한 표준강수지수 계산 인자들의 불확실성에 대한 기여도 평가)

  • Shin, Ji Yae;Lee, Baesung;Yoon, Hyeon-Cheol;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.509-520
    • /
    • 2023
  • Various drought indices are widely used for assessing drought conditions which are affected by many factors such as precipitation, soil moisture, and runoff. The values of drought indices varies depending on hydro-meteorological data and calculation formulas, and the judgment of the drought condition may also vary. This study selected four calculation components such as precipitation data length, accumulation period, probability distribution function, and parameter estimation method as the sources of uncertainty in the calculation of standardized precipitation index (SPI), and evaluated their contributions to the uncertainty using root mean square error (RMSE) and linear mixed model (LMM). The RMSE estimated the overall errors in the SPI calculation, and the LMM was used to quantify the uncertainty contribution of each factor. The results showed that as the accumulation period increased and the data period extended, the RMSEs decreased. The comparison of relative uncertainty using LMM indicated that the sample size had the greatest impact on the SPI calculation. In addition, as sample size increased, the relative uncertainty related to the sample size used for SPI calculation decreased and the relative uncertainty associated with accumulation period and parameter estimation increased. In conclusion, to reduce the uncertainty in the SPI calculation, it is essential to collect long-term data first, followed by the appropriate selection of probability distribution models and parameter estimation methods that represent well the data characteristics.

Analysis of Loss of HVAC for Nuclear Power Plant (원전의 공기조화설비(HVAC) 상실사고 분석방법)

  • Song, Dong-Soo
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.90-94
    • /
    • 2014
  • Environmental qualification (EQ) for safety-related equipment is required to ensure that those equipment will perform their required function even under the harsh environment conditions arising from design basis accident in the nuclear power plant. As a part of EQ program, the room temperature analysis in case of a loss of Heating, Ventilation, and Air Conditioning(HVAC) system was carried out to ensure the operability of the safety-related equipment of a nuclear power plant randomly chosen among the Korean nuclear power plants. In this paper, this analysis was performed in the conservative perspective using GOTHIC code. The room temperature analysis includes selecting the rooms in which the safety related equipment are located but not supported by safety related HVAC and determining the temperature of the selected rooms. Target rooms for the analysis consist of W229/W237 (Aux. feedwater pump room), W232 (Aux. feedwater tank room) and W230 (Equipment passageway). The results showed the temperature range from $43^{\circ}C$ to $83^{\circ}C$, in 72 hours after a loss of HVAC. Those values are far below of generic EQ temperature($171^{\circ}C$). Therefore, it is satisfied with EQ requirement of temperature limits on safety related equipment.

Study on the Vegetation Change of the Road-side Slopes Restored by Native Herbs and Woody Plants - Centered with Monitoring Survey - (재래 초·목본 식물 위주의 비탈면녹화 시공지에 대한 식생 변화에 관한 연구 -모니터링 조사를 중심으로-)

  • Nam, Un-Jung;Kim, Nam-Choon;Cho, Min-Hwan;Gil, In;Lee, Suk-Hae;Lee, Jeong-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.4
    • /
    • pp.70-82
    • /
    • 2007
  • Aiming at nature's early restoring needs to select plant species harmonizing with surrounding environment that fits to restoring goal of ultimately aiming at woody plants dominant vegetation that protect and stabilize surface parts of bared slopes. And it is important to make it assimilated with surrounding natural vegetation by differentiating planning of seed mixtures. Natural Ecological Restoring Construction Methods (JSB Method) was developed to increase the effect of landscape change according to seasons not to simple hydro-seeding by reducing rate of foreign grasses while raising rate of wild flower using. It was considered that using wild flowers that bloom on each season solved the problems of slope landscapes that looks artificial and uninteresting. After researching environmental condition of the slopes, JSB Method has shown that, as of wet-type method, soil is relatively soft and the difference of thickness of plant base soil media affects on the difference of soil hardness. In case of soil hardness of 8.8~17mm, there's dangerousness of slope's collapsing, but it has shown that growth of plant was favorable. For the acidity of soil, most of them are in the type of neutralized soil of more than pH 6. And after analyzing the degree of woody plants dominance, it had shown that lower part was occupied with wild flowers and other herbaceous species like China pin, golden phesant mum, pitcher plant, and middle and upper part was occupied with woody plants like silk-tree, sumac forming multi-layer structure. It can be concluded that the restoration objects of the woody plant vegetation on the roadside slopes can be accomplished successfully by Natural Ecological Restoring Construction Method (JSB method).

A Study on the Expansion Process of Vegetation on Sand-bars in Fluvial Meandering Stream (충적하천 사행하도에 발달한 사주에서의 식생형성 과정에 관한 연구)

  • Lee, Sam-Hee;Ock, Gi-Young;Choi, Jung-Kwon
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.6
    • /
    • pp.658-665
    • /
    • 2008
  • One of the characteristics of fluvial river channel with sand bed-material is the existence of movable sand bars not occupied with vegetation. However, sand bars at the Hahoe's reach of the Nakdong River showing a double-meandering channel has been changed into expanding vegetation area. Moreover, sand material, in recent years, has stopped moving to downstream in channel and the number and area of bare bars which did not occupied by vegetation have been decreased. In order to find out the mechanism, we carried out the channel characteristics surveys such as hydro-geomorphologic, soil physio-chemical and vegetation surveys were conducted twice on autumn season in 2005,2006. The results so far achieved showed that the reduced discharge of transported sediment and duration of dry season might be critical factors for the spread of luxuriant vegetation. The vegetation area was significantly expanded by floods exceeding the subsequent dominant flow discharge. Furthermore, the expansion of vegetation area was highly correlated with the supply of organic matter, nutrients and alteration of soil texture by sediment deposition during the flooding event.

Assessment of the Inundation Area and Volume of Tonle Sap Lake using Remote Sensing and GIS (원격탐사와 GIS를 이용한 Tonle Sap호의 홍수량 평가)

  • Chae, Hyosok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.96-106
    • /
    • 2005
  • The ability of remote sensing and GIS technique, which used to provide valuable informations in the time and space domain, has been known to be very useful in providing permanent records by mapping and monitoring flooded area. In 2000, floods were at the worst stage of devastation in Tonle Sap Lake, Mekong River Basin, for the second time in records during July and October. In this study, Landsat ETM+ and RADARSAT imagery were used to obtain the basic information on computation of the inundation area and volume using ISODATA classifier and segmentation technique. However, the extracted inundatton area showed only a small fraction than the actually inundated area because of clouds in the imagery and complex ground conditions. To overcome these limitations, the cost-distance method of GIS was used to estimate the inundated area at the peak level by integrating the inundated area from satellite imagery in corporation with digital elevation model (DEM). The estimated inundation area was simply converted with the inundation volume using GIS. The inundation volume was compared with the volume based on hydraulic modeling with MIKE 11. which is the most poppular among the dynamic river modeling system. The method is suitable for estimating inundation volume even when Landsat ETM+ has many clouds in the imagery.

  • PDF