• Title/Summary/Keyword: Hydro turbine

Search Result 190, Processing Time 0.02 seconds

A Study on the Application of Micro Hydro Power Generator at the Water Treatment Plant (정수장 마이크로 소수력 발전기 적용에 대한 연구)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Kim, Il-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.67-72
    • /
    • 2014
  • Inflow or outflow from the water treatment plant and the sewage water has potential energy. If this potential energy can be converted into electrical energy by water turbine generator, it can help to save energy because of the high capacity utilization. So recently, micro hydro power plant is reviewed in the water treatment facility. If generation capacity is low, induction generator is primarily used. If output capacity is low, generated power is supplied to the inside load. Induction generator can cause voltage drop by the inrush current at a start-up and requires reactive power for magnetization. In this study, we analyzed the flow of power and voltage variation against inrush current that occurs when the induction generator starts under the terms that loads of linear and non-linear of the water purification plant are used. Analysis results are that the voltage drop is within an allowable range and the power factor is slightly reduced by the need of reactive power.

Cavitation Surge in a Small Model Test Facility simulating a Hydraulic Power Plant

  • Yonezawa, Koichi;Konishi, Daisuke;Miyagawa, Kazuyoshi;Avellan, Francois;Doerfler, Peter;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.4
    • /
    • pp.152-160
    • /
    • 2012
  • Model tests and CFD were carried out to find out the cause of cavitation surge in hydraulic power plants. In experiments the cavitation surge was observed at flow rate, both with and without a surge tank placed just upstream of the inlet volute. The surge frequency at smaller flow rate was much smaller than the swirl mode frequency caused by the whirl of vortex rope. An unsteady CFD was carried out with two boundary conditions: (1) the flow rate is fixed to be constant at the volute inlet, (2) the total pressure is kept constant at the volute inlet, corresponding to the experiments without/with the surge tank. The surge was observed with both boundary conditions at both higher and lower flow rates. Discussions as to the cause of the surge are made based on additional tests with an orifice at the diffuser exit, and with the diffuser replaced with a straight pipe.

Effects of Initial Conditions on Transient Responses in Dynamic Simulation of FOWT (초기 조건이 부유식 풍력터빈 동역학 해석의 과도응답에 미치는 영향)

  • Song, Jin-Seop;Rim, Chae-Whan;Moon, Seok-Jun;Nam, Yong-Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.288-293
    • /
    • 2014
  • The IEC standard for onshore or offshore wind turbines requires additional dummy simulations (at least 5 s) for the transient responses due to initial conditions. An increase in the dummy time causes a considerable increase in the computational cost considering multiple design spirals with several thousand design load analysis cases. A time of 30 s is typically used in practical simulations for a wind turbine design with a fixed platform. However, 30 s may be insufficient for floating offshore wind turbines (FOWT) because the platforms have lower natural frequencies, and the transient responses will last much longer. In this paper, an initial condition application algorithm is implemented for WindHydro, and the appropriate dummy simulation time is investigated based on a series of dynamic simulations of a FOWT. As a result, it is found that more than 300 s is required for the platform to have stationary motion after the initial transient responses for the FOWT under the conditions considered.

Influence Analysis of Power Grid Harmonics on Synchronous Hydro Generators

  • Qiu, Hongbo;Fan, Xiaobin;Feng, Jianqin;Yang, Cunxiang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1577-1584
    • /
    • 2018
  • The content of harmonic current increases with an increase in the number of power electronic devices in power grid. When a generator is directly connected to the power grid through a step-up transformer, the influence of the harmonic currents on the generator is inevitable. To study the influences of harmonics on generators, a 24-MW bulb tubular turbine generator is taken as an example in this paper. A 2-D transient electromagnetic field model is established. Through a comparative analysis of the data of experiments and simulations, the correctness of the model is verified. The values of the air gap magnetic density, torque and losses of the generator under various conditions are calculated using the finite element method. Taking the rated condition as a reference, the influence of the harmonic currents on the magnetic flux density is analyzed. It is confirmed that the time harmonic is a key factor affecting the generator performance. At the same time, the effects of harmonic currents on the torque ripple, average torque and eddy current loss of the generator are studied, and the mechanism of the variation of the eddy current loss is also discussed.

Operation of Battery Energy Storage System for Governor Free and its Effect (주파수추종 운전 적용을 위한 BESS의 운용 방법 및 효과)

  • Cho, Sung-Min;Jang, Byung-Hoon;Yoon, Yong-Bum;Jeon, Woong-Jae;Kim, Chulwoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.16-22
    • /
    • 2015
  • As the development of Battery Energy Storage System(BESS) and the increasing of intermittent energy sources like wind power and photovoltaic, the application of BESS in load frequency control is considered as an effective method. To evaluate the effectiveness of BESS application in frequency control, we defined a governor free model of BESS to conduct dynamic simulation. Using the BESS dynamic model, we implemented the power system dynamic model including steam, gas and hydro turbine generators. In this paper we study the control performance of BESS in primary frequency control. The effect of BESS speed regulation rate and response time on governor free operation is investigated. In addition, we compared BESS from steam turbine generator in view point of frequency regulation.

The Characteristics of Film-Cooling Effectiveness on a Turbine-Blade-Shaped Surface (터빈 블레이드 형상 곡면에서의 막냉각 효율 특성)

  • Yun, Sun-Hyeon;Ryu, Won-Taek;Kim, Dong-Geon;Kim, Dae-Seong;Kim, Gwi-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.384-393
    • /
    • 2002
  • The effects of hole expansion angle and the arrangement of nozzles on a film cooling system for a turbine-blade-shaped surface were experimentally investigated. Liquid crystal with flue-temperature correlation and an image processing system were employed to evaluate surface temperature. Distributions of cooling effectiveness were then presented to figure out the change of heat transfer characteristics with different geometric conditions of cooling-holes. It was found thats the averaged cooling efficiency on the suction surface was maximum with 10 degree of the cooling hole expansion angle. It was also shown that the averaged cooling efficiency on the pressure surface and the averaged cooling efficiency for dual array case were not affected by the hole expansion angle.

Study of a Model Turbine Design Case Via Application of Spiral Case and Draft Tube Shape in Hydraulic Power Plant Modernization (수력 현대화 개·대체 시 스파이럴 케이스와 흡출관 형상에 따른 모델수차 설계 적용사례 연구)

  • Park, Nohyun;Kim, Jin-Hyuk;Kim, Seung-Jun;Hyun, Jungjae;Choi, Jongwoong;Cho, Yong
    • New & Renewable Energy
    • /
    • v.16 no.2
    • /
    • pp.35-46
    • /
    • 2020
  • Recently, turbines operating in hydro power plants are required to undergo renovation and modernization due to their age exceeding 30 years. In the process of renovation or modernization, a performance test of the scaled-down model is necessary to verify the performance of the real-size model. This model test method, with criteria that is similar to that of a real turbine, is the most economical and important method. Furthermore, the shapes of the runner and guide vane can be modified or replaced easily. However, during the process of modernization, the components with the spiral casing and draft tube are impossible to repair or replace because of the buried ground. Thus, in this study, numerical analysis is conducted to investigate the hydraulic performance based on the difference between the two-dimensional computer-aided design (CAD) shape and the real three-dimensional scan shape of the spiral casing and draft tube.

CFD Analysis for Aligned and Misaligned Guide Vane Torque Prediction and Validation with Experimental Data

  • Devals, Christophe;Vu, Thi C.;Guibault, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.132-141
    • /
    • 2015
  • This paper presents a CFD-based methodology for the prediction of guide vane torque in hydraulic turbine distributor for aligned and misaligned configurations. A misaligned or desynchronized configuration occurs when the opening angle of one guide vane differs from the opening angle of all other guide vanes, which may lead to a torque increase on neighbouring guide vanes. A fully automated numerical procedure is presented, that automates computations for a complete range of operation of a 2D or 3D distributor. Results are validated against laboratory measurements.

Failure Mode Effective Analysis for selection of Single Point Vulnerability in New type Nuclear Power Plant (신규노형 원전의 발전정지유발기기 선정을 위한 고장모드영향분석)

  • Hyun, Jin Woo;Yeam, Dong Un
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • For decreasing an unexpected shutdown of Nuclear Power Plants, Korea Hydro & Nuclear Power co.(KHNP) has developed Single Point Vulnerability(SPV) of NPPs since 2008. SPV is the equipment that cause reactor shutdown & turbine trip or more than 50% power rundown due to its malfunction. New type Nuclear Power Plants need to develop the SPV list, so performed the SPV selection for about 1 year. To develop this, Failure Mode Effect Analysis(FMEA) methods are used. As results of FMEA analysis, about 700 equipment are selected as SPV. Thereafter those are going to be applied to new type Nuclear Power Plants to enhance equipment reliability.

Selection of Single Point Vulnerability through the Failure Mode Effect Analysis of Equipment in Newly built Nuclear Power Plant (신규원전의 기기별 고장분석을 통한 발전정지유발기기 선정)

  • Hyun, Jin-Woo;Yeom, Dong-Un;Song, Tae-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.509-512
    • /
    • 2012
  • For decreasing an unexpected shutdown of Nuclear Power Plants, Korea Hydro & Nuclear Power co.(KHNP) has developed Single Point Vulnerability(SPV) of NPPs since 2008. SPV is the equipment that cause reactor shutdown & turbine trip or more than 50% power rundown due to its malfunction. Newly built Nuclear Power Plants need to develop the SPV list, so performed the job which analyse equipment failure effect for SPV selection for 1 year. To develop this, Failure Mode Effect Analysis(FMEA) and Fault Tree Analysis(FTA) methods are used. As results of this analysis, about 900 equipment are selected as SPV. Thereafter those are going to be applied to Nuclear Power Plants to enhance equipment reliability.