• 제목/요약/키워드: Hydraulic turbine

검색결과 219건 처리시간 0.023초

발전소용 유압 서보액추에이터의 쿠션 모델링 및 시뮬레이션 (Modeling & Simulation of a Hydraulic Servo Actuator Cushion for Power Plants)

  • 이용범;윤영환
    • Tribology and Lubricants
    • /
    • 제29권1호
    • /
    • pp.7-12
    • /
    • 2013
  • Turbine power control devices at a nuclear / thermoelectric power plant lead to failure by creating mechanical shocks and strong vibrations that are due to the strong elasticity of a spring and the inertia of the valve face during its rapid movement to block steam. To ensure durability of the turbine power control device, which is the main component in the power plant, it is necessary to develop a device that can prevent such vibrations. In this study, a cushion mechanism is added to the head of the hydraulic servo actuator, which is a turbine power control device. Moreover, the cushion mechanism, which includes various modifies shapes and orifices is investigated dynamically through modeling and simulations.

Analysis on Characteristic of Pressure Fluctuation in Hydraulic Turbine with Guide Vane

  • Shi, FengXia;Yang, JunHu;Wang, XiaoHui
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권3호
    • /
    • pp.237-244
    • /
    • 2016
  • An unsteady three-dimensional simulation based on Reynolds time-averaged governing equation and RNG $k-{\varepsilon}$ turbulence model, was presented for pump-as-turbine, the pressure fluctuation characteristic of hydraulic turbine with guide vane was obtained. The results show that the time domains of pressure fluctuation in volute change periodically and have identical cycles. In volute tongue and inlet pressure fluctuations are light, while in dynamic and static coupling interface pressure fluctuations are serious; In impeller blade region the pressure fluctuation of pressure surface are lighter than that of suction surface. The dominant frequencies of pressure fluctuation concentrate in low frequency region, and concentrate within 2 times of the blade passing frequency.

소수력용 수차의 종류 및 설치 예 (Classification and Installation Cases of Small Hydraulic Turbine)

  • 최영도;김유택;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.503-506
    • /
    • 2006
  • Recently, small hydropower attracts attention because of its clean renewable and abundant energy resources to develop. However, suitable turbine type is not normalized yet in the range of small hydropower and it is necessary to study for the effect ive turbine type. Moreover, relatively high manufacturing cost by the complex structure of the turbine is the highest barrier for developing the small hydropower turbine. Therefore, this study is trying not only, to classify the type of current operating turbines installed in the domestic power plants and turbines supplied in Japan by Japanese manufacturer but also, to examine the practical turbine type and installation site to extract the small hydropower energy effectively.

  • PDF

Influence of the Francis Turbine location under vortex rope excitation on the Hydraulic System Stability

  • Alligne, S.;Nicolet, C.;Allenbach, P.;Kawkabani, B.;Simond, J.J.;Avellan, F.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.286-294
    • /
    • 2009
  • Hydroelectric power plants are known for their ability to cover variations of the consumption in electrical power networks. In order to follow this changing demand, hydraulic machines are subject to off-design operation. In that case, the swirling flow leaving the runner of a Francis turbine may act under given conditions as an excitation source for the whole hydraulic system. In high load operating conditions, vortex rope behaves as an internal energy source which leads to the self excitation of the system. The aim of this paper is to identify the influence of the full load excitation source location with respect to the eigenmodes shapes on the system stability. For this, a new eigenanalysis tool, based on eigenvalues and eigenvectors computation of the nonlinear set of differential equations in SIMSEN, has been developed. First the modal analysis method and linearization of the set of the nonlinear differential equations are fully described. Then, nonlinear hydro-acoustic models of hydraulic components based on electrical equivalent schemes are presented and linearized. Finally, a hydro-acoustic SIMSEN model of a simple hydraulic power plant, is used to apply the modal analysis and to show the influence of the turbine location on system stability. Through this case study, it brings out that modeling of the pipe viscoelastic damping is decisive to find out stability limits and unstable eigenfrequencies.

수력터빈의 압력변동에 의한 로터 진동 (Vibration of the Rotor due to Pressure Fluctuation in a Hydraulic Turbine)

  • 김기섭;김호종;박영하;이욱;전재영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1027-1033
    • /
    • 2000
  • This paper describes the characteristics of vibration of a hydraulic turbine mainly due to cavitation occurrence. The analysis of vibration spectra of the turbine shaft shows that hub vortex cavitation occurs in the downstream of the turbine runner, which is verified from coherence analysis between shaft vibration displacement and dynamic pressure at the draft tube. Even though acceleration level measured at the guide vane lever, which is usually used for evaluation of cavitations performance, is decreased during forced aeration, it is found from the analysis of dynamic pressure spectra that cavitation around runner blades still remains unchanged. It is also found that lateral vibration of the turbine shaft is mainly due to the hub vortex cavitation of the turbine runner.

  • PDF

A New Concept of Hydraulic Design of Water Turbine Runners

  • Vesely, Jindrich;Pochyly, Frantisek;Obrovsky, Jiri;Mikulasek, Josef
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.383-391
    • /
    • 2009
  • Vibrations at different frequencies with a different intensity as well as a pressure pulsation with different parameters are two phenomena which can be observed at different water turbines. Due to the vibration and the pressure pulsation some restrictions of water turbine operation range are applied. Similar problems with the efficiency level in a wide water turbine operation range are the basic problems which are solved for ages. A theoretical and practical solution of the above mentioned problems is very much time and money consuming. The paper describes a new theoretical solution of the excitation and pressure pulsation decrease as well as extension of the operational range with high efficiency level. The new concept to decrease the vibrations and pressure pulsations is based on a heterogeneous runner blade geometry generation. The new concept of the runner geometry design was numerically tested at a low specific speed pump turbine, see Fig. 1, and basic points of the concept are presented in this paper.

Overload Surge Investigation Using CFD Data

  • Flemming, Felix;Foust, Jason;Koutnik, Jiri;Fisher, Richard K.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.315-323
    • /
    • 2009
  • Pressure oscillations triggered by the unstable interaction of dynamic flow features of the hydraulic turbine with the hydraulic plant system - including the electrical design - can at times reach significant levels and could lead to damage of plant components or could reduce component lifetime significantly. Such a problem can arise for overload as well as for part load operation of the turbine. This paper discusses an approach to analyze the overload high pressure oscillation problem using computational fluid dynamic (CFD) modeling of the hydraulic machine combined with a network modeling technique of the hydraulic system. The key factor in this analysis is the determination of the overload vortex rope volume occurring within the turbine under the runner which is acting as an active element in the system. Two different modeling techniques to compute the flow field downstream of the runner will be presented in this paper. As a first approach, single phase flow simulations are used to evaluate the vortex rope volume before moving to more sophisticated modeling which incorporates two phase flow calculations employing cavitation modeling. The influence of these different modeling strategies on the simulated plant behavior will be discussed.

2.5 kW 급 프로펠러형 마이크로 수차 매개변수 연구 (Parametric Study of 2.5 kW Class Propeller Type Micro Hydraulic Turbine)

  • 마상범;김성;최영석;차동안;김진혁
    • 한국수소및신에너지학회논문집
    • /
    • 제31권4호
    • /
    • pp.387-394
    • /
    • 2020
  • A parametric study of a 2.5 kW class propeller type micro hydraulic turbine was performed. In order to analyze the internal flow characteristics in the hydraulic turbine, three dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used and the hexahedral grid system was used to construct computational domain. To secure the reliability of the numerical analysis, the grid dependency test was performed using the grid convergence index method based on the Richardson extrapolation, and the grid dependency was removed when about 1.7 million nodes were used. For the parametric study, the axial distance at shroud span (L) between the inlet guide vane and the runner, and the inlet and outlet blade angles (β1, β2) of the runner were selected as the geometric parameters. The inlet and outlet angles of the runner were defined in the 3 spans from the hub to tip, and a total of 7 geometric parameters were investigated. It was confirmed that the outlet angles of the runner had the most sensitive effect on the power and efficiency of the micro hydraulic turbine.

종축소수력발전소의 인입수량과 드럼수위와의 관계에 관한 연구 (A Study on the Drum Water Level Versus Incoming Water Quantities for Small Vertical Hydraulic Water Turbine Plant)

  • 최규식;정주원
    • 한국항행학회논문지
    • /
    • 제18권3호
    • /
    • pp.254-260
    • /
    • 2014
  • 소수력발전방식 중에서 종축 소수력 발전기를 채용한 시스템에 대해서 드럼의 수위상승에 대한 연구를 수행하였다. 드럼통에 용수를 일정하게 공급할 경우, 시간의 경과에 따라 드럼통의 수위가 상승하기는 하지만 반면, 그 상승효과 때문에 증가되는 위치에너지에 의한 러너 측 유출속도와 유출량이 증가하여 수위상승을 억제하고 그 결과 수위상승이 어느 위치에 멈추게 되어 평형상태를 이루게 된다. 이 시스템의 개발 및 분석에 의하면 드럼통의 수위는 드럼통의 크기나 높이, 폭, 형, 러너의 형상 등과는 관계 없이 결정된다. 수위는 오직 인입수량과 유출수량에 의하여만 결정되고 이에 따라 출력전력도 유사한 거동을 보인다는 것이 밝혀졌다. 그러므로 인입수량이 많지 않으면 원하는 수준의 드럼수위를 유지할 수 없을 뿐만 아니라, 원하는 출력전력도 얻을 수 없다. 아울러 현재 국내 산업시설에 설치되어 시험 운전 중에 있는 종축소수력발전시스템에 대해서 이 방법을 적용 및 수행하여 이 기법의 타당성을 입증하였다.

하수처리장 소수력 수차 블레이드의 압력변화 특성 분석을 통한 구조안전성 평가 (Structural Safety Evaluation by Analysis of Pressure Variation Characteristics of Small Hydro Power Hydraulic Turbine Blades in Sewage Treatment Plant)

  • 박유신;김기중;윤병돈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권6호
    • /
    • pp.126-131
    • /
    • 2017
  • 저유속 조건에서 소수력 에너지 생산 효율 증진을 위한 항력식 수직축 수차를 개발하기 위하여 전산 유체 동역학(CFD) 기법을 이용하여 수치해석을 수행하였다. 1.0~3.0 m/s의 유속 조건에서 수차 블레이드의 타공 유무에 따른 블레이드 압력 변화와 내부유동을 분석하였다. 수치해석 결과, 타공이 있는 경우 유속에 따라 수차 블레이드의 압력 및 유체 속도가 영향을 크게 받는 것으로 나타난 반면에, 타공이 없는 경우에는 유속에 따른 수차 블레이드의 압력 및 유체 속도의 영향이 상대적으로 감소하는 것으로 나타났다. 또한, 타공이 포함되지 않은 수차 블레이드에 비교하여 타공이 포함된 수차 블레이드 표면에서 압력 분포와 유체의 속도가 고르게 나타났으며, 따라서 수차 블레이드에 타공을 형성하는 것이 구조안전성 측면에서 도움이 될 것으로 판단된다.