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Abstract 

Hydroelectric power plants are known for their ability to cover variations of the consumption in electrical power 
networks. In order to follow this changing demand, hydraulic machines are subject to off-design operation. In that case, the 
swirling flow leaving the runner of a Francis turbine may act under given conditions as an excitation source for the whole 
hydraulic system. In high load operating conditions, vortex rope behaves as an internal energy source which leads to the self 
excitation of the system. 

The aim of this paper is to identify the influence of the full load excitation source location with respect to the eigenmodes 
shapes on the system stability. For this, a new eigenanalysis tool, based on eigenvalues and eigenvectors computation of the 
nonlinear set of differential equations in SIMSEN, has been developed. First the modal analysis method and linearization of 
the set of the nonlinear differential equations are fully described. Then, nonlinear hydro-acoustic models of hydraulic 
components based on electrical equivalent schemes are presented and linearized. Finally, a hydro-acoustic SIMSEN model of 
a simple hydraulic power plant, is used to apply the modal analysis and to show the influence of the turbine location on 
system stability. Through this case study, it brings out that modeling of the pipe viscoelastic damping is decisive to find out 
stability limits and unstable eigenfrequencies. 
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1. Introduction 
At full load operating conditions, Francis turbines feature an axisymmetric cavitation vortex rope in the draft tube cone 

generated by the incoming swirling flow, see Jacob [1]. The rope may under certain conditions act as an energy source, which 
leads to self-excited pressure oscillations in the whole hydraulic system [1], [2]. These pressure oscillations can jeopardize the 
safety of mechanical and hydraulic systems on the prototype, see Jacob 1992 [3]. 

Koutnik and Pulpitel [4] applied to Francis turbines the modeling approach developed initially for pump stability analysis 
based on the use of the cavitation compliance C and of the mass flow gain factor χ  parameters, see Brennen and Acosta in 1973 
[5] and 1976 [6]. Using the transfer matrix method, Koutnik and Pulpitel [4] derived a stability diagram to explain a full load 
surge occurring on a four 39MW Francis Turbine power plant. A similar approach based on cavitation parameters mapping was 
also successfully applied to explain inducer instabilities by Tsujimoto et al. in 1993 [7] and propeller instabilities by Duttweiler 
and Brennen in 2002 [8] and by Watanabe and Brennen in 2003 [9]. In 2006, Koutnik et al.[10], used both transfer matrix method 
and time domain simulation with SIMSEN software to analyze and quantify a self excited phenomena occurring in a four 400MW 
Francis Pumped Storage plant. Finally, in 2007 Chen et al. [11] performed a one dimensional stability analysis of a simple 
hydraulic power plant and showed the destabilizing effect of the diffuser and the swirling flow on the system stability. 

The aim of this paper is to identify the influence of the full load excitation source location with respect to the eigenmodes 
shapes on the system stability. For this purpose, a new eigenanalysis tool, based on eigenvalues and eigenvectors computation of 
the nonlinear set of differential equations has been developed and implemented in SIMSEN software. First the modal analysis 
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method and linearization of the set of the nonlinear differential equations in SIMSEN are fully described. Then, nonlinear hydro-
acoustic models of hydraulic components based on electrical equivalent schemes are presented and linearized. Finally, a hydro-
acoustic SIMSEN model of a simplified hydraulic power plant, is used to apply the new modal analysis and to show the influence 
of the turbine location on system stability. 

2. Modal analysis 
2.1 General state space equation 

Initially, SIMSEN software was developed by the EPFL for the transient and steady-state simulation of electrical power 
systems and control devices having an arbitrary topology. Then, the capability of the software was extended to hydraulic 
components in order to be able to simulate the transient behavior of a complete hydroelectric power plant. The most common 
hydraulic components have been implemented such as pump-turbine, penstock, surge tank, gallery, valve, reservoir, etc. In order 
to get a common set of differential equations for both electrical and hydraulic parts, hydraulic models are based on the electrical 
analogy [12]. Therefore, dynamic behavior of a hydroelectric system, is given by a set of n  first order nonlinear ordinary 
differential equations of the following form: 

[ ] ( ) ( )dXA B X X V X
dt

⎡ ⎤⋅ + ⋅ =⎣ ⎦

r
r r r r

        
(1) 

where [ ]A  and ( )B X⎡ ⎤
⎣ ⎦

r
 are the state global matrices of dimension [ ]n n× , X

r
 and ( )V X

r r
 are respectively the state vector 

and the boundary conditions vector with n  components. This set of equations feature nonlinearity since the matrix ( )B X⎡ ⎤
⎣ ⎦

r
 and 

the boundary conditions vector ( )V X
r r

 are function of the state vector. 

 
2.2 Linearization and stabilization assessment 

Stability analysis of a hydroelectric system subjected to small perturbations is based on linearization of the nonlinear set of 
differential equations (1) around an equilibrium point, see [13]. Then, stability is deduced from the eigenvalues of the linearized 

set of differential equations. Assuming ( ) ( )f B X X V X⎡ ⎤= ⋅ −⎣ ⎦
r r r r r

 a vector of n  nonlinear functions, eq. (1) becomes: 

[ ] ( ) 0dXA f X
dt

⋅ + =
r

r rr

          
(2) 

Considering a small perturbation from the equilibrium point 0X
r

 defined by: 

0X X Xδ= +
r r r

           (3) 

this new state vector must satisfy eq. (1), and using a first order Taylor development it yields to the linearized matrix form: 

[ ] [ ] 0l
d XA B X

dt
δ δ⋅

⋅ + ⋅ =
r

rr

         
(4) 

with 
0

i
l ij

j

fB
X
∂

=
∂

 the linearized state global matrix. 

Hence, eigenvalues of the matrix [ ] [ ] [ ]1
lM A B−= −  define the sytem stability. They can be either real or complex 

numbers. A real eigenvalue is a non oscillatory eigenmode whereas a complex eigenvalue is an oscillatory one. In both cases 
damping and oscillation frequency of the eigenmode are respectively given by the real part and the imaginary part of the 
eigenvalue. Therefore, if at least one of the eigenvalue has a positive real part, the system is unstable. 

3. Modeling and linearization of hydraulic components 
The aim of this paper is to show the influence on the system stability, of the vortex rope location with respect to the 

eigenmodes shapes of the hydraulic system. Hence, the modal analysis is applied to a simple hydraulic power plant including 
viscoelastic pipes and a Francis turbine with a cavitation vortex rope. Nonlinear models of hydraulic elements involved in this 
case study are presented and linearized in this section. 
 
3.1 Viscoelastic Pipe 

By assuming uniform pressure and velocity distributions in the cross section and neglecting the convective terms, the one-
dimensional momentum and continuity balances for an elementary pipe filled with water of length dx , cross section A and wave 
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speed a, yields to the well known Allievi hyperbolic equations, see [14], [15]. Using the Finite Difference Method with a 1st order 
centered scheme discretization in space and a scheme of Lax for the discharge variable, this approach leads to a set of ordinary 
differential equations (1) which can be represented as a T-shaped equivalent electrical scheme shown in Fig. 1. The RLC 
parameters of this equivalent scheme are given by: 

2 2; ;
2

i
i

Q dx dx gAdxR L C
gDA gA a

λ
= = =         (5) 

where λ  is the local loss coefficient. The hydraulic resistance R, the hydraulic inductance L, and the hydraulic capacitance C 
correspond respectively to energy losses, inertia and storage effects due to wall deflection and fluid compressibility. Moreover, in 
order to predict accurately pressure fluctuation amplitudes and system stability, it is necessary to take into account the viscoelastic 
behavior due to an energy dissipation during the wall deflection. This additional dissipation leads to a resistance in series with the 
capacitance as shown in Fig. 1. 

 
Fig. 1 Electrical equivalent scheme of a pipe of length dx  with viscoelastic resistance 

This viscoelastic resistance is accounting for both fluid and pipe material viscoelasticity and can be expressed as: 

equ
veR

A g dx
μ
ρ

=
⋅ ⋅ ⋅           

(6) 

with equμ  the equivalent viscoelastic damping of both the fluid and the wall. The resulting set of nonlinear differential equations 

relative to the equivalent electrical circuit is set up using Kirchoff laws and can be written under matrix form: 

1/ 2 1/ 2

1 1 1 1

0 0 0 1 1 0
0 / 2 0 1 / 2
0 0 / 2 1 / 2

i i

i i ve ve i i

i ve i ve i i

C h h
dL Q R R R Q h
dt

L Q R R R Q h

+ +

+ + + +

−⎡ ⎤ ⎛ ⎞ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⋅ ⋅ + + − ⋅ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥− − + −⎣ ⎦ ⎝ ⎠ ⎣ ⎦ ⎝ ⎠ ⎝ ⎠   

(7) 

Resistance iR  , proportional to the discharge iQ , induces a nonlinearity proportional to the square exponent of the 

discharge. Applying the linearization, it yields to: 

( )' 2 '
0

2i i i i iR Q R Q Qδ δ⋅ = ⋅ ⋅ ⋅
         

(8) 

where 0iQ  is the discharge at the equilibrium point and

 

'
iR  the reduced resistance defined by: 

'
22i

dxR
gDA
λ ⋅

=
           

 (9) 

Hence, the linearized state global matrix for the viscoelastic pipe is: 

[ ] '
0viscoelastic pipe

'
1 1 0

0 1 1
1
1

l i i ve ve

ve i i ve

B R Q R R
R R Q R+ +

⎡ ⎤−
⎢ ⎥= ⋅ + −⎢ ⎥
⎢ ⎥− − ⋅ +⎣ ⎦      

(10) 

 

3.2 Francis Turbine 
Francis turbine can be modeled as a pressure source converting hydraulic energy into mechanical work, an inductance 

related to the inertia effects of the water and a resistance which models the head losses through the turbine. The resulting 
nonlinear differential equation is: 

i
t t i t I I

dQL R Q H H H
dt

+ = − + −
        

(11) 

Moreover, momentum equation applied to the rotational inertias is taken into account and leads to: 

t t elec
dJ T T
dt
ω

⋅ = −
            

(12) 

where tJ  ,
 
ω  , tT  , elecT  are respectively turbine inertia, rotational speed, mechanical torque and electromagnetic torque. 

Combined with eq. (11) the set of differential equations under matrix form is: 
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0 0
0 0 0

t t Ii t i I

t t elec

L H H HQ R Qd
J T Tdt ω ω

− + −⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎡ ⎤ ⎛ ⎞
⋅ ⋅ + ⋅ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ −⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎣ ⎦ ⎝ ⎠      

(13) 

The pressure source ( ), ,t iH Q yω
 
and the mechanical torque ( ), ,t iT Q yω are driven by the turbine characteristics which are 

nonlinear functions of the discharge, the rotational speed and the guide vane opening. In the same way as the viscoelastic pipe 
model, the resistance term of the Francis Turbine model induces a nonlinearity proportional to the square exponent of the 
discharge. Therefore the linearization of this term is identical. On the other part, the linearization of the pressure source and the 
mechanical torque is given by [16]: 

00 0

t t t
t i

i

H H HH Q y
Q y

δ δ δω δ
ω

∂ ∂ ∂
= ⋅ + ⋅ + ⋅
∂ ∂ ∂

       

(14) 
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t t t
t i

i

T T TT Q y
Q y
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ω

∂ ∂ ∂
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∂ ∂ ∂
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where partial derivative terms are the gradients of the characteristic curves at the equilibrium point. Hence, the linearized state 
global matrix is: 

[ ]
0
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l
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Q
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ω

ω
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(16)  

 
3.3 Pipe with Vortex rope self excitation 

Gaseous volume of a vortex rope at full load conditions can be modeled as a function of two state variables: the head and the 
discharge [5], [6]. Therefore the resulting state space continuity equation defining the discharge variation due to the occurrence of 
gaseous volume at the node 1/ 2i +  is:  

1/2 1
1

i i
i i rope

dH dQQ Q C
dt dt

χ+ +
+− = +

        
(17) 

where ropeC  and χ  are respectively the rope cavitation compliance and the mass flow gain factor defined by: 

1/2 1

;rope rope
rope

i i

V V
C

H Q
χ

+ +

∂ ∂
= − = −

∂ ∂          
(18) 

 
The resulting equivalent electrical scheme of a vortex rope at full load conditions is given in Fig. 2 a). 

              
Fig. 2 a) Vortex rope modeling b) Pipe of length L with vortex rope self excitation 

 
Modeling of a pipe of length l  with a vortex rope self excitation, implies to combine the equivalent electrical schemes of the 

vortex rope and the viscoelastic pipe. Moreover, only one pressure node is used to model the pipe of length l , see Fig. 2 b). It 
leads to an equivalent concentrated compliance equC  defined by two capacitances in parallel: 

0equ ropeC C C= +
          

(19) 

where 0C  is the compliance of the wall deformation. Hence, to model the vortex rope self-excitation in pipe, two rope parameters 

are available: the rope cavitation compliance and the mass flow gain factor. For this investigation, cavitation rope compliance and 
mass flow gain factor are constant. Therefore nonlinearity and linearization are the same as the ones of the viscoelastic pipe model. 
 

a)  b) 
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4. Case studies 
Power and pressure fluctuations have been experienced at full load operating conditions during commissioning tests in a 

Pumped-Storage plant located in the southeastern United States featuring four 400MW Francis pump-turbines [10]. Koutnik et al. 
showed that the cavitation compliance and the mass flow gain factor of the vortex rope, reached unstable values because of the 
shutdown of one pump turbine. The aim of this paper is to highlight that unstable rope parameters can be stable for another 
location in the hydraulic system. This analysis shows the influence on the stability of the vortex rope location with respect to the 
eigenmodes shapes of the hydraulic system. First a simple case including a pipe with cavitation development is treated and results 
are used to analyze the instability of a simple hydraulic power plant. 
 
4.1 Pipe with cavitation development 

The first case study is a pipe with uniform cross section subdivided in three parts as illustrated in Fig. 3. The central part is 
where the cavitation development is modeled with the vortex rope self excitation model, see Fig. 2 b). Hence, the self-excitation 
can be located everywhere along the pipe adjusting the lengths of the upstream and the downstream pipes. 
 

 
Fig. 3 Pipe with cavitation development 

Both viscoelastic damping and location of the excitation, influence the stability limits of the system. First of all, to predict 
accurately stability limits and amplitude of pressure fluctuations, the equivalent viscoelastic damping parameter equμ  of the pipe 

model is decisive. To assess the effect of this parameter, cavitation development is not taken into account in the system by putting 
compliance and mass flow gain factor equal to zero. System eigenvalues are computed for different equivalent viscoelastic 
dampings and plotted in Fig. 4 a). Moreover, for the first ten eigenmodes, damping is plotted as function of the equivalent 
viscoelastic damping in Fig. 4 b). 

 
Fig. 4 Influence of the viscoelastic damping on eigenvalues 

If the viscoelastic damping is equal to zero, then damping of all the eigenmodes are equal. However, according to the Fig. 4 
b), the more the viscoelastic damping is high, the more the modal damping increases. Moreover, for a given viscoelastic damping, 
eigenmodes of high frequencies have a damping higher than low frequencies. Therefore, this parameter introduces a frequency-
dependent damping of the system as [17]. 

Then, influence on stability of the self-excitation location is investigated. Fig. 5 shows the first six eigenmodes computed for 
the system without cavitation. The effect of two excitation locations are studied and are symbolized in Fig. 5 by the vertical 

dashed lines: 0.5 or 0.75excitationx
l

= . 

 
Fig. 5 Discharge modes of a uniform pipe without cavitation development 

Cavitation parameters 

a)  b)
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Taking into account the cavitation parameters, eigenvalues are computed for these two locations and are compared to the 
eigenvalues of the system without cavitation, see Fig. 6. Abscissa is the eigenvalue real part i.e. the modal damping and the 
ordinate is the imaginary part i.e. the frequency. Fig. 6 a) is given for the system without viscoelastic damping and Fig. 6 b) for a 
viscoelastic damping of 63.10  Pa.sequμ =  . 

 

 
Fig. 6 Influence of excitation location on modal dampings (a) without and (b) with viscoelastic damping 

 
For a given location of the excitation source, two kinds of eigenmodes must be identified: the ones which excitation is 

located on a discharge node, showed by the dashed lines in Fig. 6, and the others. For instance, when excitation is located at the 
half of the pipe length, odd eigenmodes are excited on a node whereas three quarter of the pipe length corresponds to a node only 
for the 2nd, 6th and 10th eigenmodes. In such situation, the modal damping of the excited eigenmode is increased. The more the 
eigenmode is high, the more the increase of the damping is significant, see the shape of the dashed lines in Fig. 6. For the 
remaining eigenmodes where excitation is not located on a node, the modification of the modal damping depends on the sign of 
the eigenmode slope. When the latter is positive, the damping increases whereas it decreases when the sign is negative, see 
respectively 3rd and 5th eigenmode for an excitation at three quarter of the pipe length. The higher is the slope, the higher the 
modification of the damping is significant. When the slope is equal to zero on an antinode, the damping is unchanged. One can 
observe, that influence of excitation is more important in this situation than in the particular case of a location on a node. 
Instability occurs when a modal damping is increased and becomes positive. Therefore, according to the previous observations, 
the most critical location of the excitation is not on a node but where the slope is positive and maximum. In the case of a system 
without viscoelastic damping, see Fig. 6 a), the most unstable eigenmode has a high frequency, since its slope is the highest. 
However if a viscoelastic damping is taken into account, see Fig. 6 b), the same behaviors are observed but eigenmodes with high 
frequency are damped and therefore become stable. Hence, potential unstable eigenmodes should have a low frequency. 

 
4.2. Hydraulic power plant 

The simplified hydraulic power plant features two significant pipe cross sections as illustrated in Fig. 7 and mentioned in 
Tab. 1. From this simple installation, a one dimensional hydroacoustic model is carried out. Full load operating conditions defined 
in Tab. 1 are investigated with the modal analysis to show the influence of the vortex rope self-excitation location on system 
stability. 

 
Fig. 7 Simplified layout 

 

Table 1 Layout dimensions and turbine parameters 
Reservoirs Pipe 1 Pipe 2 Pipe 3 Pump turbine 

H1 497 m l1 615 m l2 180 m l3 85 m Specific speed 0.306 
H2 194 m D1 10 m D2 5 m D3 5 m Nominal rotational speed 300 rpm 
  a1 1 000 m/s a2 1 200 m/s a3 1 200 m/s Moment of inertia 2.77 106 kg.m2 
        Thoma number 0.18 

 
 

a)  b) 

Pipe 2 Pipe 3 Pipe 1 

Rope 
parameters 

H 1 H 2 
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li, Di and ai are respectively length, diameter and wave speed of the ith pipe. System stability is assessed by computing eigenvalues 
as function of the two rope parameters in Fig. 8 a). Eigenvalues with positive real part are ploted which allows to identify unstable 

couple parameters. For this investigation, the chosen rope parameters are: 20.01 mC =  and 0.04 sχ = − . According to the 
instability diagram of Fig. 8 a), these parameters are identified as unstable ones, leading to eigenvalues plotted in Fig. 8 b). 

       
Fig. 8 (a) Instability diagram (b) Eigenvalues for unstable rope parameters 

 
 
In this configuration, the third eigenmode, which frequency is 1.8 Hz, is unstable. In order to explain why the third 

eigenmode damping is positive, conclusions established from the case study of the uniform pipe with cavitation development, can 
be used. In Fig. 9, the first discharge modes are plotted a) without and b) with rope self-excitation. The two vertical dashed lines 

located at 0.7x
l
=  and 0.9x

l
=  symbolize respectively the change of the pipe cross section and the location of the turbine. At 

this turbine position, the first and the second eigenmodes have slight positive slopes. Therefore, dampings are slightly increased 
but not sufficient to become positive. Then according to the third and the fourth eigenmodes, excitation is located on a significant 
positive slope, inducing an increase of the dampings. However, viscoelastic damping reduces more the increase of the fourth 
eigenmode than the third one, which explains why it is only the third eigenmode which becomes unstable. 
 

 

 
Fig. 9 Discharge modes (a) without rope excitation and (b) with rope excitation 

 

Turbine location is now considered as a parameter. The aim is to identify if for these unstable rope parameters, a stable 
location exists or not. Therefore, system eigenvalues have been computed for different locations between the cross section change 
and the downstream reservoir, see Fig. 10. Modal damping and frequency evolution of the first eigenmodes are plotted as function 
of the turbine location. 

a)  b)

a) 

b) 
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Fig. 10 Turbine position effect on eigenvalues 

 

Only the third and the fourth eigenmodes feature positive modal damping which may appear if the turbine is located between 

0.86turbinex
l

=  and 0.95turbinex
l

=  . Therefore if the turbine is out of this area which corresponds to 79 m length, the system is 

stable for the given rope parameters. 

5. Conclusion 
Modal analysis based on eigenvalues and eigenmodes computation of the set of nonlinear differential equations has been 

introduced and used to assess influence of turbine location on the system stability at full load conditions. It has been showed that 
relative position of the excitation with respect to the eigenmode shapes, changes the eigenmode dampings. Moreover, modeling of 
the viscoelastic behavior induces a frequency dependent damping which is more significant for high frequencies. Therefore, the 
worst location for a full load self-excitation is where the maximum positive slope of a low discharge eigenmode is observed. With 
such an analysis, the relative location of the turbine can be optimized at early stage of hydroelectric project for stability 
assessment. 
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Nomenclature 

l  Loss coefficient [-] Q  Discharge [m3.s-1] 
g  Gravity acceleration [m.s-2] H  Pressure [m] 
D  Diameter, [m] c Mass flow gain factor [s] 
r  Fluid density, [kg.m-3] 

ropeC  Rope compliance [m2] 

A  Cross section, [m2] a Wave speed [m.s-1] 
R  Resistance, [s.m-2] 

equm  Equivalent viscoelastic damping [Pa.s] 

L  Inductance, [s2.m-2] a  Modal damping [-] 
C  Capacitance, [m2] f  Frequency [Hz] 

veR  Viscoelastic resistance, [s.m-2] w Rotational frequency [Hz] 

l  Length [m] 
tJ  Turbine inertia [kg.m2] 

dx  Elementary length [m] 
tT  Turbine torque [N.m] 

y  Guide vane opening [-] 
tH  Turbine head [m] 
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