• Title/Summary/Keyword: Hydraulic pipeline

Search Result 111, Processing Time 0.026 seconds

Dynamic Respeonse of Hydraulic Pipe Lines with a Relative Small Diameter (직경이 작은 유압관로에서의 동특성)

  • 유영태
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.38-44
    • /
    • 1999
  • This paper primarily directed toward analyzing the frequency response in hydraulic pipe lines with a small diameter. The exact solution to the frequency response is obtained by using the complicated transfer function. The discrepancy with the exact and the approximate is small so the approximation solution is adopted to compare the experimental results with the theoretical analysis. In this experiment the input frequency was generated by the frequency generator with the ball valve and speed controller. In order to compare the theoretical were forms with the experimental ones the trace obtained from the oscilloscope is photographed, The diameter the length of lines and input pressure amplitude are varied to investigate their effects,. the experiment results show that th values of dimensionless parameter are very affected to the phase delay and guide response time in the design of pressure manifold to measure the pressure of hydraulic pipelines.

  • PDF

Effective Smoothness of Surge Pressure Generated in the Return Line of Active Suspension Hydraulic System for Vehicle (자동차 능동 현가장치 유압계 회귀 관로에서의 서지 압력 저감법)

  • 정용길;이일영;윤영환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.111-118
    • /
    • 1998
  • Surge pressure problem at the oil return line of the hydraulic circuit of an active suspension system for passenger cars was investigated by experiments and numerical analyses. In the numerical analyses, the method of characteristics was used for simulating unsteady flow in the hydraulic system and gas discrete model was adopted for estimating gas volume variation in separated liquid column. In the experiments and analyses, effects of the physical parameters of the accumlator on smoothing surge pressure was elucidated.

  • PDF

The Characteristics of Pulsating Flow in a Hydraulic Pipe (유압관로에서 맥동유동 특성에 관한 연구)

  • 모양우;유영태;김지화
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.653-665
    • /
    • 2001
  • The characteristics of the pulsating flow in a hydraulic pipe have been investigated. It is necessary to study the power control of the power transmission system in the landing gear system of aircraft and the design of robots. In this system, the power transmission pipeline is composed of a hydraulic system, and the operating flow is unsteady flow. The wave equation varying with frequency is analyzed in order to investigate the characteristics of unsteady flow in such a pipe. This wave equation involves the propagation coefficient in terns of frequency and viscosity. The theoretical result of this wave equation are compared with experimental result. Each wave equation, varying with the propagation coefficient, is analyzed theoretically. then, a sinusoidal wave generator is built in order to make better sinusoidal waves, and a rectifier is built to eliminate the noise from the hydraulic pump. The theoretical results of the wave equation in the flow of viscous fluid agree well with experimental results.

  • PDF

A Study on the Hydraulic Vibration Characteristics of the Prefill Check Valve (프리필용 체크밸브의 유압진동 특성에 관한 연구)

  • Park, Jeong Woo;Han, Sung-Min;Lee, Hu Seung;Yun, So-Nam
    • Journal of Drive and Control
    • /
    • v.18 no.3
    • /
    • pp.8-15
    • /
    • 2021
  • A rear axle steering (RAS) system is attached to the rear of medium and large commercial vehicles that transport large cargo. The existing RAS systems are driven by electro-hydraulic actuator (EHA), and most commercialized EHAs consist of electric motors, hydraulic pumps, relief valves, prefill valves and cylinders. The prefill valve required for such EHAs is a type of check valve with extremely low cracking pressure that should not allow RAS to have noise or vibration, and the prefill valve prevents system negative pressure as well as unstable operation. Most papers on this topic rely on experiments to predict valve performance, and theoretically detailed modeling of valves or pipelines is performed, but it is very rare to evaluate hydraulic vibration characteristics by analysing everything from hydraulic pumps to valves comprehensively. In this study, we proposed an experimental circuit that can predict the performance of the prefill valve. The study also analysed the pressure-flow pulsation that is transmitted to the valve through the pipeline, and how the transmitted pressure-flow pulsation affects the valve vibration.

A Study of Hydraulic Turbine Design for The Discharge Water Energy Harvesting (방출 수 에너지 하베스팅을 위한 수차 설계에 관한 연구)

  • Cheong, Han Seok;Kim, Chung Hyeok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.78-83
    • /
    • 2021
  • We modeled the helical turbine and three modified helical turbines for the structure of the hydraulic turbine for discharge water energy harvesting. A structure that can reduce the load applied to the blade by placing a center plate is our basic concept. The shape was reduced to 1/5, fixed to a size of 240 mm in height and 247 mm in diameter, and modeled by changing the width and the angle of the hydraulic turbine blade. The pipe inner diameter of the simulation pipeline equipment is 309.5 mm, and the simulation section was 4 m in the entire section. The flow velocity was measured for two cases, 1.82 m/s and 2.51 m/s, with the parameters being the amount of power generation, hydraulic turbine's torque, and hydraulic turbine's rotation speed. The measurement results confirmed that the flow velocity at the center, which has no pipe surface resistance, has a great influence on the amount of power generation; therefore, the friction area of the turbine blade should be increased in the center area. In addition, if the center plate is placed on the helical turbine, durability can be improved as it reduces the stress on the blade.

Integrated Water Distribution Network System using the Mathematical Analysis Model and GIS (수리해석 모형과 GIS를 이용한 통합 용수배분 시스템)

  • Kwon, Jae-Seop;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.4
    • /
    • pp.21-28
    • /
    • 2001
  • In this study, GNLP(GIS linked non-linear network analysis program) for pipeline system analysis has been developed. This GNLP gets the input data for pipeline analysis from existing GIS(geographic information system) data automatically, and has GUI(graphic user interface) for user. Non-Linear Method was used for hydraulic analysis of pipe network based on Hazen-Williams equation, and Microsoft Access of relational database management system(RDBMS) was used for the framework of database applied program. GNLP system environment program was improved so that a pipe network designer can input information data for hydraulic analysis of pipeline system more easily than that of existing models. Furthermore this model generate output such as pressure and water quantities in the form of a table and a chart, and also produces output data in Excel file. This model is also able to display data effectively for analysed data confirmation and query function which is the core of GIS program.

  • PDF

Unsteady Flow with Cavitation in Viscoelastic Pipes

  • Soares, Alexandre K.;Covas, Didia I.C.;Ramos, Helena M.;Reis, Luisa Fernanda R.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.269-277
    • /
    • 2009
  • The current paper focuses on the analysis of transient cavitating flow in pressurised polyethylene pipes, which are characterized by viscoelastic rheological behaviour. A hydraulic transient solver that describes fluid transients in plastic pipes has been developed. This solver incorporates the description of dynamic effects related to the energy dissipation (unsteady friction), the rheological mechanical behaviour of the viscoelastic pipe and the cavitating pipe flow. The Discrete Vapour Cavity Model (DVCM) and the Discrete Gas Cavity Model (DGCM) have been used to describe transient cavitating flow. Such models assume that discrete air cavities are formed in fixed sections of the pipeline and consider a constant wave speed in pipe reaches between these cavities. The cavity dimension (and pressure) is allowed to grow and collapse according to the mass conservation principle. An extensive experimental programme has been carried out in an experimental set-up composed of high-density polyethylene (HDPE) pipes, assembled at Instituto Superior T$\acute{e}$cnico of Lisbon, Portugal. The experimental facility is composed of a single pipeline with a total length of 203 m and inner diameter of 44 mm. The creep function of HDPE pipes was determined by using an inverse model based on transient pressure data collected during experimental runs without cavitating flow. Transient tests were carried out by the fast closure of the ball valves located at downstream end of the pipeline for the non-cavitating flow and at upstream for the cavitating flow. Once the rheological behaviour of HDPE pipes were known, computational simulations have been run in order to describe the hydraulic behaviour of the system for the cavitating pipe flow. The calibrated transient solver is capable of accurately describing the attenuation, dispersion and shape of observed transient pressures. The effects related to the viscoelasticity of HDPE pipes and to the occurrence of vapour pressures during the transient event are discussed.

A Study on Pressure Surge Accompanied by Repeated Valve Operation in Oil Hydraulic Pipeline (유압관로에서 절환밸브 반복조작에 따른 충격압력 발생 현상에 관한 연구)

  • Jung, Yong-Gil;Yum, Man-U;Lee, Jin-Geol;Lee, Il-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.2
    • /
    • pp.33-42
    • /
    • 1988
  • In a large scale oil hydraulic system having repeatedly operated actuator, such as a large scale forging press, pressure surges often due to the recombination of oil column in a return line attached to the downstream side of a directional control valve. Expecially, the pressure surges appear very severe ones at a certain valve operating frequency. These pressure surges restrict the operating frequency of the hydraulic system. But related reports on the above mentioned phenomenon are rarely to be found. In this study, therefore, the authors investigate the exact reason why such severe pressure surges occur at a certain range of valve operating frequency. The study is performed by experiment and numerical computation on the relationship between pressure surges and valve operating frequency.

  • PDF

유압용 액셜 피스톤 펌프의 압력맥동 특성(유압필터에 의한 고주파 압력맥동의 흡수)

  • 김도태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.281-286
    • /
    • 1998
  • In this paper, a Helmholtz resonator type hydraulic filter is proposed to absorb flow and pressure ripple produced from a axial piston pump. The basic principle of hydraulic filter is applied to propagation of preossure waves, reflection, absorption in cross section of discontinuity and resonance in the pipeline. This filter has advantage of the compact size and high degree of freedom of installation. The design scheme of hydraulic filter based on viscous wave theory are developed and manufactured two kinds of filter to investigate damping capability. It is experimently confirmed that these filter is absorbed to be about 20dB of flow and pressure ripple with high frequencies.

  • PDF