• Title/Summary/Keyword: Hydraulic pipeline

Search Result 111, Processing Time 0.022 seconds

REDUCTION OF PRESSURE RIPPLES USING A PARALLEL LINE IN HYDRAULIC PIPELINE

  • KIM K. H.;JANG J. S.;JUNG D. S.;KIM H. E.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.65-70
    • /
    • 2005
  • Pressure ripples, which are inevitably generated by a fluctuation of flow rate caused by a pump mechanism, include noises and vibrations in hydraulic pipeline. These noises and vibration deteriorate the stability and accuracy of hydraulic systems. The accumulator and hydraulic attenuator are normally used to reduce the pressure ripples. In this study, a parallel line is introduced to the hydraulic pipeline for the hydraulic system with a bent-axis piston pump as a method to reduce the pressure ripples. The dynamic characteristics of the hydraulic pipeline with a parallel line are analyzed by a transfer matrix in the frequency domain. The usefulness of the hydraulic pipeline with a parallel line was ascertained by experiment and simulation. The results from the experiment and simulation show that the hydraulic pipeline with a parallel line were effective in reducing the pressure ripples.

Unsteady Flow Rate Measurement by Using Hydraulic Pipeline Dynamics (유압관로의 동특성을 이용한 비정상 유량계측)

  • 김도태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.411-416
    • /
    • 1999
  • The measurement of unsteady flow rate is of vital importance to clarify and improve the dynamic characteristics in pipeline, hydraulic components and system. There is also demand for a real time flow sensor of ability to measure unsteady flow rate with high accuracy and fast response to realize feedback control of flow rate in fluid power systems. In this paper, we propose an approach for estimating unsteady flow rate through a pipeline and components under high pressure condition. In the method, unsteady flow rate is estimated by using hydraulic pipeline dynamics and the measured pressure values at two distant points along the pipeline. The distributed parameter model of hydraulic pipeline is applied with consideration of frequency dependent viscosity friction and unsteady velocity distribution at a cross section of a pipeline. By using the self-checking functions of the method, the validity is investigated by comparison with the measured and estimated pressure waveforms at the halfway section on the pipeline. The results show good agreement between the estimated flow rate waveforms and theroetical those under unsteady laminar flow conditions. the method proposed here is useful in estimating unsteady flow rate through an arbitray cross section in hydraulic pipeline and components without installing an instantaneous flowmeter.

  • PDF

Hydraulic Design of Natural Gas Transmission Pipeline in the Artic Area (극한지 장거리 천연가스 배관의 유동 설계)

  • Kim, Young-Pyo;Kim, Ho-Yeon;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.58-65
    • /
    • 2016
  • Hydraulic analysis of the natural gas transmission pipeline is to determine whether adequate flow can be sustained throughout the design life of pipeline under all expected flow conditions. Many factors have to be considered in the hydraulic design of long-distance pipelines, including the nature, volume, temperature and pressure of fluid to be transported, the length and elevation of pipeline and the environment of terrain traversed. This study reviewed the available gas operation data provided by pipeline construction project in the arctic area and discussed the gas properties such as viscosity and compressibility factor that influence gas flow through a pipeline. Pipeline inside diameter was calculated using several flow equations and pipeline wall thickness was calculated from Barlow's equation applying a safety factor and including the yield strength of the pipe material. The AGA flow equation was used to calculate the pressure drop due to friction, gas temperature and pipeline elevation along the pipeline. The hydraulic design in this study was compared with the report of Alaska Pipeline Project.

Unsteady Flow Rate Measurement Based on Distributed Parameter Pipeline Model (분포정수계 관로모델을 이용한 비정상 유량계측)

  • Kim, Do-Tae;Hong, Sung-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.8-13
    • /
    • 2008
  • The paper proposes a model-based measurement of unsteady flow rate by using distributed parameter pipeline model and the measured pressure values at two distant points along the pipeline. The distributed parameter model of hydraulic pipeline is applied with consideration of frequency dependent viscosity friction and unsteady velocity distribution at a cross section of a pipeline. By using the self-diagnostics functions of the measurement method, the validity is investigated by comparison with the measured and estimated pressure and flow rate wave forms at the halfway section on the pipeline. The results show good agreement between the estimated flow rate wave forms and theoretical those under unsteady laminar flow conditions. The method proposed here is useful in estimating unsteady flow rate through an arbitrary cross section in hydraulic pipeline and components without installing an instantaneous flowmeter.

Development of the Hydraulic Inspection Method for Irrigation Pipeline Systems (관수로 시스템 수리진단 기법 개발)

  • Kim, Young-Hwa;Park, Ji-Sung;Cheong, Byong-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.251-254
    • /
    • 2003
  • For improving the flow capacity of pipeline system the hydraulic inspection method was developed conducting on-site with survey of pipeline facility such as diversion work, air vent, etc. and pipe network analysis. The pipe network analysis method determine pipe diameter with trial and error. The validity of the hydraulic inspection method proved adapting on S-district pipeline system.

  • PDF

Frequency Response Characteristics of Automotive Hydraulic Pipelines (자동차용 유압관로의 주파수 응답 특성)

  • Kim, Do-Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.177-182
    • /
    • 2007
  • In this paper, automotive hydraulic pipeline systems are modeled in which a straight blocked pipe, two pipes with sudden expansion or contraction are connected in series and terminated with a chamber. The frequency response characteristics of these composite pipeline systems are investigated experimentally. The theoretical analysis for various pipe configurations is base on transfer matrix method with frequency dependent viscous friction distributed parameter pipeline model. The gain and phase of transfer functions are included for comparison with experimental results. There is close agreement between the results of experimental and theoretical determination of pressure response in automotive hydraulic pipeline systems.

Speed Control of Oil Hydaulic Motor Systems Using an Electrohydraulic Servo Valve (전기.유압 서보 밸브를 이용한 유압모터계의 회전수 제어)

  • 김도태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.405-410
    • /
    • 1999
  • Hydraulic pipeline between servo valve and actuator affect the dynamic characteristics of electrohydraulic servo systems in serveral ways. This paper deal with the speed control of oil hydraulic gear motor using electrohydraulic servo valve. The frequency and transient response of electrohydraulic servo valve coupled to a gear motor is anlayzed. In particular, the effect of short and long hydraulic pipelines between servo valve and gear motor is investigated. The dynamic characteristics of the speed control systems of gear motor with short pipeline is first described via frequency response experiments with small signal linearized analysis. Loner pipeline is applied distributed parameter pipeline model with consideration of frequency dependent viscous friction.

  • PDF

Cavitation inception in oil hydraulic pipeline (유압관로에서의 캐비테이션 초생)

  • 이일영;염만오;이진걸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.46-52
    • /
    • 1988
  • The cavitation inception in oil hydraulic pipeline was investigated experimentally and numerically. In the experiment, negative pressures below-1 MPa(absolute pressure) were measured, associated with the transient flows in oil hydraulic pipeline. These experimental results show that the common hydraulic oil in the experimental pipeline withstands large tensions. In order to interpret the experimental results on cavitation inception, the growth of a spherical bubble in viscous compressible fluid due to a stepwise pressure drop was investigated by numerical analysis, and the critical bubble radius was obtained. The calculated value of the critical bubble radius corresponding to the negative pressure measured in the experiment is so small that the premised conditions about the bubble shape in the analysis is unsatisfactory. The physical significance of this calculated result implies the fact that there hardly exist free bubbles which can act as cavitation nuclei in the experimental pipeline.

  • PDF

Cavitation Inception in Oil Hydraulic Pipeline (유압관로에서의 캐비테이션 초생)

  • 정용길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.127-130
    • /
    • 1987
  • The Cavitation inception in oil hydraulic pipeline was investigated experimentally and numerically. In the experiment, negative pressures below -1 MPa (absolute pressure) were measured, associated with the transient flows in oil hydraulic pipeline. These experimental results show that the common hydraulic oil in the experimental pipeline withstands large tensions. The growth of a spherical bubble in a infinite volume of viscous compressible fluid due to a stepwise pressure drop was investigated to obtain the critical bubble radius. The calculated value of the critical bubble radius corresponding to the negative pressure measured in the experiment is so small that the premised condition about the bubble shape in the analysis is unsatisfactory. The physical significance of this calculated result implies the fact that there hardly exist free bubbles which can act as cavitation nuclei in the experimental pipeline.

  • PDF

Cavitation Inception in Oil Hydraulic Pipeline (유압관로에서의 캐비테이션 초생)

  • Jung, Yong-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.17-17
    • /
    • 1987
  • The Cavitation inception in oil hydraulic pipeline was investigated experimentally and numerically. In the experiment, negative pressures below -1 MPa (absolute pressure) were measured, associated with the transient flows in oil hydraulic pipeline. These experimental results show that the common hydraulic oil in the experimental pipeline withstands large tensions. The growth of a spherical bubble in a infinite volume of viscous compressible fluid due to a stepwise pressure drop was investigated to obtain the critical bubble radius. The calculated value of the critical bubble radius corresponding to the negative pressure measured in the experiment is so small that the premised condition about the bubble shape in the analysis is unsatisfactory. The physical significance of this calculated result implies the fact that there hardly exist free bubbles which can act as cavitation nuclei in the experimental pipeline.