• Title/Summary/Keyword: Hydraulic measurement

Search Result 407, Processing Time 0.031 seconds

Effects of load variation on a Kaplan turbine runner

  • Amiri, K.;Mulu, B.;Cervantes, M.J.;Raisee, M.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.182-193
    • /
    • 2016
  • Introduction of intermittent electricity production systems like wind and solar power to electricity market together with the deregulation of electricity markets resulted in numerous start/stops, load variations and off-design operation of water turbines. Hydraulic turbines suffer from the varying loads exerted on their stationary and rotating parts during load variations since they are not designed for such operating conditions. Investigations on part load operation of single regulated turbines, i.e., Francis and propeller, proved the formation of a rotating vortex rope (RVR) in the draft tube. The RVR induces pressure pulsations in the axial and rotating directions called plunging and rotating modes, respectively. This results in oscillating forces with two different frequencies on the runner blades, bearings and other rotating parts of the turbine. This study investigates the effect of transient operations on the pressure fluctuations exerted on the runner and mechanism of the RVR formation/mitigation. Draft tube and runner blades of the Porjus U9 model, a Kaplan turbine, were equipped with pressure sensors for this purpose. The model was run in off-cam mode during different load variations. The results showed that the transients between the best efficiency point and the high load occurs in a smooth way. However, during transitions to the part load a RVR forms in the draft tube which induces high level of fluctuations with two frequencies on the runner; plunging and rotating mode. Formation of the RVR during the load rejections coincides with sudden pressure change on the runner while its mitigation occurs in a smooth way.

Characteristics of Substrate Degradation and Bacterial Population in the Membrane Separation Anaerobic Digestion Process (막분리혐기성소화공정에 있어서 기질분해와 세균군의 분포특성)

  • Cha, Gi-Cheol;Chung, Hyung-Keun;Kim, Dong-Jin;Kim, Young-Chur
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.541-554
    • /
    • 2000
  • Experimental study of anaerobic digestion process combined with and without the submerged separation membrane was investigated by using laboratory-scale reactor at the hydraulic retention time of 0.5 day and 1.0 day. The removal efficiencies of carbohydrate at the digester without and with membrane were 84.4 to 86.8 % and 99.6 to 99.7 %, respectively, and the methane gas recovery efficiencies were 0.4 to 1.2 % and 12.3 to 28.7 %. According to the measurement by the most probable numbers method. the numbers of various groups of bacteria in the digesters with membrane were enumerated in the following ranges ; acidogens : $1.7{\times}10^9$ to $5.0{\times}10^9MPN/m{\ell}$, homoacetogens : $5.0{\times}10^7$ to $2.4{\times}10^8MPN/m{\ell}$, $H_2$-utilizing methanogens : $1.3{\times}10^7$ to $9.2{\times}10^8MPN/m{\ell}$, and acetate-utilizing methanogens : $2.3{\times}10^6$ to $2.0{\times}10^8MPN/m{\ell}$. The number of methanogens at the digester with membrane increased by approximately $10^2$ to $10^4$ times in comparison with that of the digester without membrane.

  • PDF

Uncertainty Analysis in Estimation of Roughness Coefficient Using the Field Measurement Data (현장실측에 의한 조도계수 산정의 불확실도 평가)

  • Kim, Ji-Sung;Lee, Chan-Joo;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.10
    • /
    • pp.801-810
    • /
    • 2007
  • In this study, validity and limitation of the estimation of roughness coefficient using the measured field data are investigated and the errors of the calculated roughness coefficient are analyzed. The assumption of uniform flow led to much difference of the computed results in low flow, and this is due to change of the cross-section informations such as flow area and hydraulic radius rather than the difference of velocity head. From the comparison between the estimations of average roughness coefficient in the reach which is relatively long, the calculation using the modified Newton-Raphson method is very efficient and accurate. In the measured roughness coefficient, the errors of measured flow and stage are included and the lower flow is, the larger the magnitude of error of measured roughness coefficient is. But the error of depth and velocity associated with uncertainty of roughness coefficient is less than about 5% in the both of low and high flow, and it shows the validity of measured roughness coefficient.

Estimation of Soil Loss into Sap-Gyo Reservoir Watershed using GIS and RUSLE (GIS와 RUSLE 기법을 이용한 삽교호유역의 토사 유실량 산정)

  • Kim, Man-Sik;Jung, Seung-Kwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.19-27
    • /
    • 2002
  • Prediction of exact soil loss yield has as important engineering meaning as prediction of exact flow measurement in a stream. The quantity of soil loss in a stream should be considered in planning and management of water resources and water quality such as design and maintenace of hydraulic structures : dams, weirs and seawalls, channel improvement, channel stabilization, flood control, design and operation of reservoirs and design of harbors. In this study, the soil loss of Sap-gyo reservoir watershed is simulated and estimated by RUSLE model which is generally used in the estimation of soil loss. The parameters of RUSLE model are selected and estimated using slope map, landuse map and soil map by GIS. These parameters are applied to RUSLE's estimating program. And soil loss under probability rainfall in different frequencies are estimated by recent 30 years of rainfall data of Sap-gyo reservoir watershed.

  • PDF

Measurement of rock fracture toughness under mode I, II & mixed-mode conditions by using disc-typed specimens (인장, 전단 및 혼합모드에서 디스크 시험편을 이용한 암석의 파괴인성 측정에 관한 연구)

  • 장수호;이정인
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.315-327
    • /
    • 1999
  • Rock fracture mechanics has been widely applied to blasting, hydraulic fracturing, rock slope and many other practical problems in rock engineering. But a measuring method for the fracture toughness of rock, one of the mort important parameters in fracture mechanics as an intrinsic property of rock, has not been yet well established. To obtain mode I rock fracture toughness, the more favorable disc-typed specimens such as CCNBD, SCB, chevron-notched SCB and BDT were used in this study. Rock fracture toughness under mixed-mode and mode II conditions was measured by using the STCA applied to the CCNBD specimen. Size effects such as specimen thickness, diameter and notch length on fracture toughness were investigated. From the mixed-mode results, fracture envelops were obtained by applying various regression curves. The mixed-mode results were also compared with three mixed-mode failure criteria. In each fracture toughness test, acoustic emission was measured to get the data for determining the load levels of different crack propagation patterns.

  • PDF

A Study on the Operating Characteristics of Molded Case Circuit Breakers according to Temperature Rise (온도상승에 따른 배선용 차단기의 동작특성에 관한 연구)

  • Jung, Da-Woon;Kim, Jae-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.8-13
    • /
    • 2015
  • Molded Case Circuit Breakers (MCCBs) are typically used to provide over current protection for electrical safety caused by short circuit faults and overloads in indoor low voltage power systems. The MCCB automatically connects and disconnects loads from the electrical source when the current reaches a value and duration that will cause an excessive. However, the MCCB sometimes is not interrupted due to a malfunction, nuisance tripping, or in a fire. Ensuring electrical safety is very important in a indoor low voltage power system. This paper presents the operating characteristics of MCCBs according to a temperature rise from room temperature to 160 degrees Celsius delivered by a radiant panel heater. The ABS 54c(rated current: 30A) of the hydraulic magnetic trip type was used in the experiments. The signals of temperature, voltage, and current were measured using the high accuracy Signal Conditioning Extensions for Instrumentation (SCXI) measurement system with the LabVIEW program manufactured by National Instruments. The operating characteristics were measured as functions of current amplitude and ramp-up rate. The MCCB tripping time decreased as a result of increasing current amplitude and ramp-up rate under a temperature rise condition, because the temperature and level of the current are directly proportional to the tripping time. Additionally, an instantaneous operation was observed after 8 times of the rated current, and the MCCB began to melt a surface temperature of around 300 degrees Celsius of. The experimental results coincided well with the operating curve.

Experimental study on the method of estimating the vertical design wave force acting on a submerged dual horizontal plate

  • Kweon, Hyuck-Min;Oh, Sang-Ho;Choi, Young-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.569-579
    • /
    • 2013
  • A steel-type breakwater that uses a submerged dual horizontal porous plate was originally proposed by Kweon et al. (2005), and its hydrodynamic characteristics and design methodology were investigated in a series of subsequent researches. In particular, Kweon et al. (2011) proposed a method of estimating the vertical uplift force that acts on the horizontal plate, applicable to the design of the pile uplift drag force. However, the difference between the method proposed by Kweon et al. (2011), and the wave force measured at a different time without a phase difference, have not yet been clearly analyzed. In this study, such difference according to the method of estimating the wave force was analyzed, by measuring the wave pressure acting on a breakwater model. The hydraulic model test was conducted in a two-dimensional wave flume of 60.0 m length, 1.5 m height and 1.0 m width. The steepness range of the selected waves is 0.01~0.03, with regular and random signals. 20 pressure gauges were used for the measurement. The analysis results showed that the wave force estimate in the method of Kweon et al. (2011) was smaller than the wave force calculated from the maximum pressure at individual points, under a random wave action. Meanwhile, the method of Goda (1974) that was applied to the horizontal plate produced a smaller wave force, than the method of Kweon et al. (2011). The method of Kweon (2011) was already verified in the real sea test of Kweon et al. (2012), where the safety factor of the pile uplift force was found to be greater than 2.0. Based on these results, it was concluded that the method of estimating the wave force by Kweon et al. (2011) can be satisfactorily used for estimating the uplift force of a pile.

Evaluation of the Performance of Water Quality Models for the Simulation of Reservoir Flushing Effect on Downstream Water Quality (저수지 플러싱 방류가 하류 수질에 미치는 영향 모의를 위한 수질모델의 성능 평가)

  • Jung, Yong Rak;Chung, Se Woong;Yoon, Sung Wan;Oh, Dong Geun;Jeong, Hee Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.48-57
    • /
    • 2009
  • A two-dimensional (2D), laterally-averaged hydrodynamic and water quality model, CE-QUAL-W2 was applied to evaluate the performance on simulating the effect of flushing from Daecheong Reservoir on the downstream water quality variations during the flushing events held on November, 2003 and March, 2008. The hydraulic and water quality simulation results were compared with field measurement data, as well as a one-dimensional (1D), unsteady model (KORIV1) that revealed limited capability in the previous study due to missing the resuspension process of river bottom sediments. The results showed that although the 2D model made satisfactory performance in reproducing the temporal variations of dissolved matters including phosphate, ammonia and nitrate, it revealed poor performance in simulating the increase of biological oxygen demand and suspended sediment (SS) concentrations during the passage of the flushing flow. The reason of the error was that the resuspension process of the 2D model is only the function of shear stress induced by wind. In reality, however, as shown by significant correlation between bottom shear stress ($\tau$) and observed SS concentration, the resuspension process can be significantly influenced by current velocity in the riverine system, especially during flushing event. The results indicate that the resuspension of river bottom materials should be incorporated into the water quality modeling processes if $\tau$ is greater than a critical shear stress (${\tau}_c$) for better simulation of flushing effect.

Strength analysis of mechanical transmission using equivalent torque of plow tillage of an 82 kW-class tractor

  • Kim, Taek-Jin;Kim, Wan-Soo;Kim, Yeon-Soo;Chung, Sun-Ok;Park, Seong-Un;Hong, Soon-Jung;Choi, Chang-Hyun;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.723-735
    • /
    • 2019
  • The power-train is the most important component of an agricultural tractor. In this study, the strength of the driving gear transmission of an 82 kW-class tractor was analyzed using equivalent torque during plow tillage. The load measurement system consisted of an engine revolution speed sensor, torque-meters, revolution speed sensors for four axles, and pressure sensors for two hydraulic pumps. The load data were measured during plow tillage for four speed stages: F2 (2.78 km/h), F5 (5.35 km/h), F7 (7.98 km/h), and F8 (9.75 km/h). Aspects of the gear-strength such as bending stress, contact stress, and safety factors were analyzed under two torque conditions: the equivalent torque at the highest plow load for the F8 speed stage and the maximum engine torque. The simulation results using KISSsoft showed that the maximum engine torque conditions had a lower safety factor than did the highest equivalent torque condition. The bending safety factors were > 1 at all gear stages, indicating that gear breakage did not occur under actual measured operating conditions, nor under the maximum torque conditions. However, the equivalent torque condition in the contact stress safety factor was > 1, and the maximum torque condition was < 1 at the first gear pair. The method of analysis using the equivalent torque showed lower stress and higher safety factor than did the method using maximum torque. Therefore, when designing a tractor by applying actual working torque, equivalent torque method would support more reliable product development.

A Convergency Study on the Gas Turbine Rotation Axis Temperature Sensor for Power Plants (발전소용 가스터빈 회전축 온도 센서 융합연구)

  • Lee, Jeongl-Ick;Na, Gi-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.293-298
    • /
    • 2019
  • The global market for temperature sensors for power plants is estimated at around 35 billion won, of which South Korea relies on imported products for more than 95 percent. This study is that a temperature measurement device for gas turbine rotators for power plants and can be applied to more than 800 of 100 MW gas turbine generators operating in Korea. This study has improved durability by changing the shape of the measuring part, structure of the connecting part, and material changes, and is a component technology applicable to other measuring devices such as humidity, gas and hydraulic pressure used in precision chemical process and plant export industry. As a result of this study, temperature sensors designed as three types of sensors for measuring the temperature of the gas turbine for power plants met Class 1 temperature accuracy in the range of 0℃ to 300℃, and improved durability significantly compared to similar products.