• Title/Summary/Keyword: Hydraulic measurement

Search Result 408, Processing Time 0.029 seconds

Calculation of Unsaturated Hydraulic Conductivity from Soil Moisture Changes in Pressure-Plate Extractor (Pressure-Plate Extractor 내(內) 토양수분함량(土壤水分含量) 변화(變化)로부터 불포화수리전도도(不飽和水理傳導度)의 계산(計算))

  • Ro, Hee-Myeong;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.1
    • /
    • pp.7-11
    • /
    • 1984
  • A study was carried out to develop a modified Gardner's method, which enabled us to obtain simultaneously both the unsaturated hydraulic conductivities and the moisture retention curves by the use of a soil moisture pressure-plate extractor. The unsaturated hydraulic conductivity was calculated from soil moisture changes under different tension ranges in the pressure- plate extractor by means of Gardner's pressure-plate outflow equation. From 30mbar-tension to 10bar-tension, the unsaturated hydraulic conductivities obtained on three soils (Bonryang sandy loam, Yesan silt loam, and Pogog clay loam) varied $3.09{\times}10^{-2}cm/day{\sim}4.06{\times}10^{-6}cm/day$, $1.34{\times}10^{-2}cm/day{\sim}7.30{\times}10^{-6}cm/day$, and $1.83{\times}10^{-2}cm/day{\sim}8.50{\times}10^{-6}cm/day$, respectively. In comparison with the outflow method, it is inconvenient to perform the periodic determinations of the soil moisture content that require release of the applied Pressure before readjusting the pressure desired for each measurement. Nevertheless, the main advantage of the modified method is that the unsaturated hydraulic conductivities of different soils can be calculated simultaneously with a small amount of each soil sample. It is concluded that the unsaturated hydraulic conductivity can be calculated from soil moisture changes in the soil moisture pressure-plate extractor.

  • PDF

Analysis of Power Requirement of Agricultural Tractor by Major Field Operation (농업용 트랙터의 주요 농작업 소요동력 분석)

  • Kim, Yong-Joo;Chung, Sun-Ok;Park, Seung-Jae;Choi, Chang-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.36 no.2
    • /
    • pp.79-88
    • /
    • 2011
  • The purpose of this study was to analyze power requirement of an agricultural tractor by major field operations. First a survey was conducted to obtain annual usage ratio of agricultural tractor by field operation. Plowing, rotary tillage, and loader operations were selected as major field operations of agricultural tractor. Second, a power measurement system was constructed with strain-gauge sensors to measure torque of four driving axles and a PTO axle, speed sensors to measure rotational speed of the driving axles and an engine shaft, pressure sensors to measure pressure of hydraulic pumps, an I/O interface to acquire the sensor signals, and an embedded system to calculate power requirement. Third, the major field operations were experimented under fields with different soil conditions following planned operation paths. Power requirement was analyzed during the total operation period consisted of actual operation period (plowing, rotary tillage, and loader operations) and period before and after the actual operation (3-point hitch operating, forward and reverse driving, braking, and steering). Power requirement of tractor major components such as driving axle part, PTO part, main hydraulic part, and auxiliary hydraulic part were measured and calculated to determine usage ratio of agricultural tractor power. Results of averaged power requirement for actual field operation and total operation were 23.1 and 17.5 kW, 24.6 and 19.1 kW, and 14.9 and 8.9 kW, respectively, for plowing, rotary tillage, and loader operations. The results showed that rotary tillage required the greatest power among the operations. Averaged power requirement of driving axles, PTO axle, main hydraulic part, and auxiliary part during the actual field operation were 8.1, 7.8, 3.4, and 1.5 kW, respectively, and the total requirement power was about 70 % (20.8 kW) of the rated power. Averaged power requirement of driving axles, PTO axle, main hydraulic, and auxiliary hydraulic for the total operation period were 6.5, 6.0, 2.1, 0.9 kW, respectively, and total requirement power was about 52 % (15.5 kW) of the rated power. Driving axles required the greatest amount of power among the components.

A study on the validation of hydraulic model using lagrangian GPS floater (Lagrangian 전자부자를 이용한 수리모델 검증 방안 연구)

  • Lee, Ho Soo;Lee, Jeong Min;Han, Eun Jin;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1047-1055
    • /
    • 2019
  • Various types of numerical modeling techniques are used to predict the behavior of pollutants under various water environmental conditions in the event of a water pollutant accident. Among them, a hydraulic model that can consider water flow characteristics is the most basic and very important. The process of evaluating whether the hydraulic model accurately predicts the applied river characteristics is very important. In the verification of the modeling result, the measuring data are often used in the river. Currently, ADCP and FlowTrackers are widely used to measure the flow velocity of rivers. However, ADCP is not accurate when the depth is less than 0.6 m and also when the ratio of irreversibility near the surface is more than 40%. Futhermore, FlowTracker has a limitation in measuring at high depth and high velocity due to the direct measurement method in rivers. Simuation results, which are validated by these methods, are not reliable for low depth conditions of low flowrate and high velocity conditions of high flowrate. In this study, Lagrangian GPS floaters which measures physical quantity of water according to particle movement is used without the conventional method measured by Eulerian technique. The verification method of the model results was studied by comparing the simulation results of the hydraulic model with the velocities measured using the GPS floaters. When comparing the traveling distance of the GPS floaters with the traveling distance of the LPT simulations, the average error rate was 13.6% on distances, and the average error rate was 3.2% on velocities except for the stagnant section. Therefore, GPS floaters can be used for a correction and verification method of hydraulic model simulations.

A Study for the Shaft Vibration of the Vertical Type Hydro Electric Power Generator (수축형 수차발전기 축진동에 관한 연구(I))

  • 이승원
    • 전기의세계
    • /
    • v.13 no.3
    • /
    • pp.28-37
    • /
    • 1964
  • It is the intention of this thesis to discriminate and investigate the cause of the shaft vibration of the vertical type hydroelectric power generator with respect to electrical, mechanical and hydraulic aspects, and to analyze the vibration which will occure by the each cause investigated above. In order to test the shaft vibration of No.1 generator in Hwachon, Korea new measurement method and measuring equipments were designed. In practice the shaft vibration of the generator was measured by above equipments and analyzed by the discriminative method. Detailed explanation for the designed measurement method and instruments is presented, and the results which I had tested three times for the generator No.1 in Hwachon power plant are added. As a appendix the mechanism and causes of the thrust bearing's wear and remarks for the runner are written.

  • PDF

An approach for remote measurement of instantaneous flowrate by making use of hydraulic pipeline dynamics

  • Yokota, Shinichi;Kim, Dotae;Nakano, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.749-754
    • /
    • 1989
  • This paper describes a remote measurement method for estimating unsteady flowrate through a pipeline. By this method, instantaneous flowrate at the remote location along a pipeline (distance L) from flowmeters is measured by making use of dynamic characteristics between two cross sections of the circular pipeline. Using this method, instantaneous flowrate is accurately measured at a location where it is difficult to setup flowmeters. The estimated flowrate waveforms by the method are compared with directly measured ones by cylindrical choke-type instantaneous flowmeter. The validity of the method is established.

  • PDF

Pulse-Pre Pump Brillouin Optical Time Domain Analysis-based method monitoring structural multi-direction strain

  • Su, Huaizhi;Yang, Meng;Wen, Zhiping
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.145-155
    • /
    • 2016
  • The Pulse-Pre Pump Brillouin Optical Time Domain Analysis (PPP-BOTDA) technique is introduced to implement the multi-direction strain measurement. The monitoring principle is stated. The layout scheme of optical fibers is proposed. The temperature compensation formula and its realizing method are given. The experiments, under tensile load, combined bending and tensile load, are implemented to validate the feasibility of the proposed method. It is shown that the PPP-BOTDA technique can be used to discriminate the multi-direction strains with high spatial resolution and precision.

Open-channel discharges evaluation by the application of smart sensors

  • Khatatbeh, Arwa;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.138-138
    • /
    • 2022
  • Understanding a stream's or river's discharge is essential for a variety of hydrological and geomorphological applications at various sizes. However, depending on the stream environment and flow conditions, it is crucial to use the appropriate techniques and instruments. This will ensure that discharge estimations are as reliable as possible. This study presents developed smart system for continuous measurement of open channel discharge and evaluate streamflow measurement over various techniques. This includes developed smart flow meter as flow point measurements, smart water level sensor (installed on Hydraulic Structure ? Weir) and current meters. Advantages and disadvantages of each equipment are presented to ensure that the most appropriate method can be selected. we found that smart water level sensor is more prominent once used during flood event as compared to smart flow meter and current meters, while current meters seems to show better accuracy once applied for open channel.

  • PDF

A Study on Measuring Soil-Water Characteristic Curve Using a Suction Control Technique (흡입력 조절 기법을 이용한 함수특성곡선 측정에 관한 연구)

  • Lee, Joonyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5587-5594
    • /
    • 2012
  • Determination of the soil-water characteristic curve is one of the most important things to solve geotechnical engineering problems. Expecially, convenient and reliable method to measure the soil-water characteristic curve during drying and wetting cycles is required with lower labor input, more independence from operator experience, and shorter testing time than other available methods. Many measurement methods including the flow pump system have been developed to characterize the soil-water characteristic curve for the several decades. This study measured the soil-water characteristic curve during drying and wetting cycles using a suction control technique with the flow pump system. Two test materials were used for determination of the soil-water characteristic curve, and it is concluded that suction control technique is suitable for determination of the soil-water characteristic curve and characterization of the hydraulic hysteresis with varying test conditions. Especially, the suction control technique can reduce error of measurement and save time in measuring the soil-water characteristic curve due to automated system and high degree of precision.

Influence of Drying Methods on Measurement of Hydration Degree of Hydraulic Inorganic Materials: 1) Ordinary Portland cement paste and mortar (수경성 무기재료의 수화도 측정에 대한 건조방법의 영향: 1) 보통 포틀랜드 시멘트 페이스트 및 모르타르)

  • Lee, Hyo Kyoung;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.92-105
    • /
    • 2018
  • The present study was carried out to find a suitable drying method for measuring non-evaporable water contents of various hydraulic inorganic materials. In Part 1 of the paper, the case Ordinary Portland cement is discussed. Various drying methods including vacuum and oven drying, and an ignition, were used for the OPC paste and mortar having different w/c. The sole vacuum drying under room temperature led a fluctuation on measurement of hydration degree, while the sole oven drying also yielded unwanted hydration promotion at the early age. A combination of the vacuum and oven drying was considered as a suitable drying method for the OPC case.

Pre-processing of load data of agricultural tractors during major field operations

  • Ryu, Myong-Jin;Kabir, Md. Shaha Nur;Choo, Youn-Kug;Chung, Sun-Ok;Kim, Yong-Joo;Ha, Jong-Kyou;Lee, Kyeong-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • Development of highly efficient and energy-saving tractors has been one of the issues in agricultural machinery. For design of such tractors, measurement and analysis of load on major power transmission parts of the tractors are the most important pre-requisite tasks. Objective of this study was to perform pre-processing procedures before effective analysis of load data of agricultural tractors (30, 75, and 82 kW) during major field operations such as plow tillage, rotary tillage, baling, bale wrapping, and to select the suitable pre-processing method for the analysis. A load measurement systems, equipped in the tractors, were consisted of strain-gauge, encoder, hydraulic pressure, and radar speed sensors to measure torque and rotational speed levels of transmission input shaft, PTO shaft, and driving axle shafts, pressure of the hydraulic inlet line, and travel speed, respectively. The entire sensor data were collected at a 200-Hz rate. Plow tillage, rotary tillage, baling, wrapping, and loader operations were selected as major field operations of agricultural tractors. Same or different farm works and driving levels were set differently for each of the load measuring experiment. Before load data analysis, pre-processing procedures such as outlier removal, low-pass filtering, and data division were performed. Data beyond the scope of the measuring range of the sensors and the operating range of the power transmission parts were removed. Considering engine and PTO rotational speeds, frequency components greater than 90, 60, and 60 Hz cut off frequencies were low-pass filtered for plow tillage, rotary tillage, and baler operations, respectively. Measured load data were divided into five parts: driving, working, implement up, implement down, and turning. Results of the study would provide useful information for load characteristics of tractors on major field operations.