• 제목/요약/키워드: Hydraulic machine

검색결과 337건 처리시간 0.027초

유압 충격압력 발생기의 시스템 설계와 성능평가 (System Design and Performance Test of Hydraulic Intensifier)

  • 김형의;이기천;김재훈
    • 대한기계학회논문집A
    • /
    • 제34권7호
    • /
    • pp.947-952
    • /
    • 2010
  • 압력용기, 유압호스 조립체, 어큐뮤레이터, 유압실린더, 유압밸브, 파이프 등의 제품들의 시험은 일반적으로 ISO와 SAE에서 정의되는 충격압력 조건들로 작동되고 있다. 충격압력 시험 장비는 높은 압력, 정확한 제어 시스템, 장기간 사용할 수 있는 수명을 가지는 것이 요구되며, 언급된 사항들은 유압 시스템에서 보다 높은 압력이 발생되어지는 충격압력 발생기를 제작하는데 필요하다. 충격압력 시험기는 제어는 편리하지만 높은 가격인 서보밸브 제어 시스템이 적용되었다. 제어 시스템의 적용은 시험하는 제품들에 영향을 주는 압력의 파형을 생성한다. 본 연구는 유량과 압력, 압력의 상승속도를 고려한 충격압력 발생시스템 설계 및 제작 과정을 연구하는 것을 목적으로 한다. 이것은 또한 결과로써 시스템에서 초고압의 압력을 발생시키는 압력 파형을 얻을 수 있었다.

Surface Roughness Impact on Francis Turbine Performances and Prediction of Efficiency Step Up

  • Maruzewski, Pierre;Hasmatuchi, Vlad;Mombelli, Henri-Pascal;Burggraeve, Danny;Iosfin, Jacob;Finnegan, Peter;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.353-362
    • /
    • 2009
  • In the process of turbine modernizations, the investigation of the influences of water passage roughness on radial flow machine performance is crucial and validates the efficiency step up between reduced scale model and prototype. This study presents the specific losses per component of a Francis turbine, which are estimated by CFD simulation. Simulations are performed for different water passage surface roughness heights, which represents the equivalent sand grain roughness height. As a result, the boundary layer logarithmic velocity profile still exists for rough walls, but moves closer to the wall. Consequently, the wall friction depends not only on roughness height but also on its shape and distribution. The specific losses are determined by CFD numerical simulations for each component of the prototype, taking into account its own specific sand grain roughness height. The model efficiency step up between reduced scale model and prototype value is finally computed by the assessment of specific losses on prototype and by evaluating specific losses for a reduced scale model with smooth walls. Furthermore, surveys of rough walls of each component were performed during the geometry recovery on the prototype and comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements. This study underlines that if rough walls are considered, the CFD approach estimates well the local friction loss coefficient. It is clear that by considering sand grain roughness heights in CFD simulations, its forms a significant part of the global performance estimation. The availability of the efficiency field measurements provides an unique opportunity to assess the CFD method in view of a systematic approach for turbine modernization step up evaluation. Moreover, this paper states that CFD is a very promising tool for future evaluation of turbine performance transposition from the scale model to the prototype.

초고속 용사 적용 고속 초고압 왕복동 펌프 플런저의 내구성 특성에 관한 연구 (A Study on Characteristics of Durability for Plunger of High Speed and Ultra-High Pressure Reciprocating Pump Using High Velocity Oxygen Fuel Spraying)

  • 배명환;박병호;정화;박희성
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.20-28
    • /
    • 2014
  • The high velocity oxygen fuel spraying (HVOF) is a kind of surface modification process technology to form the sprayed coating layer after spraying the powder to molten or semi-molten state by the ultra-high speed at the high-temperature heat source and conflicting with a substrate. It is desirable to melt completely the thermal spray powder in order to produce the coating layer with an optimal adhesion, however, because a semi-molten powder in a spray process has the low efficiency and become a factor that degrades the mechanical property by the inducement of pore-forming within the coating layer. To improve the wear resistance, corrosion resistance and heat resistance, in this study, the plungers of high-speed and ultra-high pressure reciprocating hydraulic pumps for oil and water used in ironwork are produced with $420J_2$ and the coating layers of plungers are formed by the powders of WC-Co-Cr and WC-Cr-Ni including the high hardness WC. The surface of these plungers is modified by the super-mirror face grinding machine using variable air pressure developed in this laboratory, and then the characteristics of cross-sectional microstructure, and surface roughness and hardness values between no operation and 100 days-operation are examined and made a comparison. The fine tops and bottoms on surface roughness curve of oil-hydraulic pump plunger sprayed by WC-Cr-Ni are molded more and higher than those of water-hydraulic pump sprayed by WC-Co-Cr because the plunger diameter of oil-hydraulic pump is 0.4 times smaller than that of water-hydraulic pump and the pressure of oil-hydraulic pump exerted on the plunger is operated with the 70 bars higher than that of water-hydraulic pump. As a result, it is found that the values of centerline average surface roughness and maximum height for oil-hydraulic pump plunger are bigger than those of water-hydraulic pump plunger.

유압 서보실린더의 동합금 피스톤 헤드와 부시의 마멸특성에 관한 실험적 연구 (A Experimental Study on Wear Characteristics of Cu Alloy for Piston Head and Bush Material of Hydraulic Servo Cylinder)

  • 조연상;김영희;변상민;박흥식
    • Tribology and Lubricants
    • /
    • 제25권5호
    • /
    • pp.330-334
    • /
    • 2009
  • Hydraulic servo cylinders have been used to control accurately a large machine in power plant. Especially, Piston head and bush of servo cylinder is assembled sleeve and piston head and bush made of Cu alloy and pad sealing part. A damages of sleeve and piston head, bush are caused by friction and wear. Thus, It is necessary to examine friction and wear characteristics of Cu alloys for the piston head and bush. In this study, to be reliable on the piston and cylinder parts, dry friction and wear experiments were carried out with Cu alloys of four kinds of AlBC, PBC, BC and BS using reciprocating friction tester of pin on disk type. From this study, the result was shown that the AlBC and PBC with alloy elements were excellent to resistance wear. As the sliding speed was increased, the wear loss of PBC decreased than another Cu alloy.

고주파수 PWM제어를 이용한 ABS의 맥동 저감에 관한 연구 (A Study on Falling Pressure Surge of ABS Using High Frequency PWM Control)

  • 이용주;김병우;박호
    • 한국공작기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.38-44
    • /
    • 2003
  • The solenoid valve in ABS hydraulic modulator is a two directional on-off valve and is controlled by around 100Hz high speed pulse width modulation. When the valve is switched from open state to closed state, noise and vibration due to pressure surge phenomena in the hydraulic line and wheel cylinder are made. In this study, we identify Pressure surge phenomenon in the braking process of a ABS, and investigate the way to reduce the phenomenon. For the purpose of theoretical analysis on the pressure surge in the closed state hydraulic line, characteristic curve method based on wave equation was utilized. To reduce the surge, high frequency control of 20kHz was attempted. The result showed that the surge pressure of 50% was reduced compared to one observed in the low frequency control. Duty variation of high frequency can control current of solenoid valve and prevent sudden change of displacement.

Simulation on Hydraulic Control Characteristics of Regulator System in Bent-Axis Type Piston Pump

  • Kim, Jong Ki;Oh, Seok Hyung;Jung, Jae Youn
    • KSTLE International Journal
    • /
    • 제1권2호
    • /
    • pp.101-106
    • /
    • 2000
  • Variable displacement axial piston pumps are widely used for raising the energy level of the fluid in hydraulic systems. And the regulator is the device which regulates the discharge flow of the piston pump by controlling the swivel angle. The regulator receives the hydraulic pilot pressure and controls the pump output flow depending on the machine load and engine speed. This work deals with constant power control (horsepower control) in the design of a regulator by using a bent-axis type piston pump. In order to effectively use engine power, we must keep the horsepower from the engine to the pump constant. Therefore the regulator operates the constant power control. As a result, optimum power usage is obtained by accurately following the power hyperbola. This study focused on developing a simulation model of a regulator. First, the governing equations of the regulator are derived, and analysis is performed by computer simulation, which can identify significant parameters of regulator. As a result, the variation of the swivel angle, flow rate, hyperbolic curve, inner leakage and responsibility are simulated, and significant parameters of a regulator are identified.

  • PDF

온도.비열 가속모형을 적용한 유압호스조립체 수명특성 연구 (A Study of the Life Characteristic of Hydraulic Hose Assembly by Adopting Temperature-Nonthermal Acceleration Model)

  • 이기천;김형의;조유희;심성보;김재훈
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제11권3호
    • /
    • pp.235-244
    • /
    • 2011
  • Hydraulic hose assemblies deliver a fluid power in various oil pressure equipment such as construction machinery, automobile, aircraft, industrial machinery, machine tools and machinery for ships. Also, they are widely used as pipes in oil pressure circuit. When we estimate their lifetime, it is essential to conduct an accelerated life test by choosing the factor that suits the usage condition of the test object since traditional test method for estimating lifetime under the influence of various external factors incurs hardship in terms of time and expenses. The objective of this study is to propose an acceleration model that takes both temperature and pressure without flexing condition into consideration. The lifetime is estimated by applying the proposed temperature-nonthermal acceleration model to the test data. And we compare the proposed temperature-nonthermal acceleration model and the accelerated life equation suggested by John(1994).

실차의 거동한계를 고려한 굴착기의 굴착 경로설계 연구 (A Study on Excavation Path Design of Excavator Considering Motion Limits)

  • 신대영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권2호
    • /
    • pp.20-31
    • /
    • 2021
  • An excavator is a construction machine that can perform various tasks such as trenching, piping, excavating, slope cutting, grading, and rock demolishing. In the 2010s, unmanned construction equipment using ICT technology was continuously developed. In this paper, the path design process was studied to implement the output data of the decision stage, and the path design algorithm was developed. For example, the output data of the decision stage were terrain data around the excavator, excavator mechanism information, excavator hydraulic information, the position and posture of the bucket at key points, the speed of the desired bucket path, and the required excavation volume. The result of the path design was the movement of the hydraulic cylinder, boom arm, bucket, and bucket edge. The core functions of the path design algorithm are the function of avoiding impact during the excavation process, the function to calculate the excavation depth that satisfies the required excavation volume, and the function that allows the bucket to pass through the main points of the excavation process while maintaining the speed of the desired path. In particular, in the process of developing the last function, the node tracking method expressed in the path design table was newly developed. The path design algorithm was verified as this path design satisfied the JCMAS H02 requirement.

유압 텔레스코픽 붐의 스틱-슬립에 대한 거동해석 (Behavior analysis on stick-slip of hydraulic telescopic boom)

  • 백일현;정재연;김신
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.296-303
    • /
    • 2002
  • Tribology, in other words, interacting surfaces in relative motion, is essential in life. The relative motion on surfaces may cause some problems with heat, vibration, noise, and so on. Unwanted vibrations by friction, which may arise during the operation of machines, are costly in terms of reduction of performance and service life. All these phenomena inolve stick-slip. The telescopic boom operations involves stick-slip oscillations like slideways. Unwanted stick-slip oscillations on telescopic boom operations cannot achieve smooth sliding and many developers of that machine makes a lot of effort to remove or reduce it. So this paper presents stick-slip oscillation with pressure of the hydraulic cylinder which drives booms, and attempts a theoretical approach for the numerical analysis for its stick-slip condition.

  • PDF

반능동 점성감쇠를 이용한 유체댐퍼 개발에 관한 연구 (A Study on the Development of a Hydraulic Damper using Semi-Active Viscous Damping)

  • 전종균;김현식
    • 한국산학기술학회논문지
    • /
    • 제1권2호
    • /
    • pp.15-20
    • /
    • 2000
  • 본 논문에서는 교량 밑 건축구조물, 각종 기계부품의 진동문제를 보완하기 위한 방법으로서 MR유체를 이용한 댐퍼를 연구하였다. MR 유체의 특성을 이용한 댐퍼를 모델링하여, 설계도면을 기초로 MR 댐퍼를 제작하였다. 만능재료 시험기를 이용하여 주파수와 전류 및 변위를 단계적으로 변화시켜가며 성능실험을 반복적으로 수행하였다. 실험을 통하여 주파수, 전류 및 변위에 따라 댐핑 효과가 다르게 나타남을 확인할 수 있었다.

  • PDF