• 제목/요약/키워드: Hydraulic line

검색결과 330건 처리시간 0.026초

전동기 구동 카고펌프의 적용 및 경제성 연구 (A Study on the Application and Economical Efficiency of Electric Driven Cargo Pumping System)

  • 조동주;김경배;박명규
    • 설비공학논문집
    • /
    • 제24권1호
    • /
    • pp.85-89
    • /
    • 2012
  • This study has been conducted to compare two cargo handling systems on MR tanker and Panamax tanker. Submerged hydraulic cargo pumps with hydraulic power packs and frequency converter controlled electric deepwell pumps will be investigated and compared on all aspects of initial cost, installation, operation and maintenance. The result of investigation shows Electric Systems have less manufacturing costs, higher environmental friendliness and reliable operation compare to Hydraulic Systems. Furthermore, the present experimental data will provide important database for Electric Systems onboard new ships and practical and empirical guidelines are constructed for further determine the design of the Electric Systems.

사판식 피스톤 펌프-관로계에서의 맥동류 해석 (Analysis of Pulsating Flow in a Swash Plate Type Piston Pump and Transmission Line)

  • 최영학;이일영
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.45-49
    • /
    • 2000
  • Vibration and noise problem in a hydraulic system became one of very important factors in evaluating the performance of a hydraulic system. It is known that vibration and noise in a hydraulic system is directly related to flow pulsation in the hydraulic pump in the system. This study investigated a modeling and simulation technique for pulsating flow in a swash plate type axial piston pump. The key design factors of the pump related to flow pulsation phenomenon of the pump are the physical parameters for notches on the valve plate of the pump. By the numerical analysis, effects of the physical parameters of the notch on the flow pulsation was elucidated.

  • PDF

주물의 디버링(Deburring) 로봇에 관한 연구(PID유량제어에 의한 그라인디의 목표궤도제어) (Robotic Deburring for Casting(TRajectory Control of Grinder by PID Flow Rate Control)

  • 강순동;허만조;원경;횡천융일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.131-144
    • /
    • 1995
  • This paper presetns modifications of a hydraulic shovel to robotize, and we derive a dynamic model of the hydraulic shovel arms,and hydraulic analysis are discussed . Then , our purpose is making to imitate a target railroad line of the grinder position by the PID control. Moreover, to determine the gains of the PId controller, we referenced the Ziegler and Nichols' method. In this paper, we demonstrated that the PID control is available for system. These results indicated the possibility of practical use fo the deburring robot with the hydraulic shovel.

  • PDF

유압 굴삭기의 궤적 추종을 위한 강인 제어 (Robust Control of Trajectory Tracking for Hydraulic Excavator)

  • 최종환;김승수;양순용;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.22-29
    • /
    • 2004
  • This paper studies the coordinated trajectory control of an excavator as a kind of robotic manipulators driven by hydraulic actuators. Hydraulic robot system has many non-linearity in dynamics and kinematics, and strong coupling among joints(or hydraulic cylinders). This paper proposes a combined controller frame of the adaptive robust control(ARC) and the sliding mode control(SMC) for the trajectory tracking control of the excavator to preserve the advantages of the both methods while overcoming their drawbacks, namely, asymptotic stability of adaptive system for parametric uncertainties and guaranteed transient performance of sliding mode control for both parametric uncertainties and external disturbance. The suggested control technique is applied for the tracking of a straight-line motion of end-effector of manipulators, and through computer simulations, its trajectory tracking performances and the robustness to payload variation and uncertainties are illustrated.

Maglev(UTM-02) Brake System Change from Pneumatic Bake System to Hydraulic Brake System

  • Kim, Kinam;Hwang, Sungwoon;Jeon, Heekwon
    • International Journal of Railway
    • /
    • 제8권1호
    • /
    • pp.30-34
    • /
    • 2015
  • The Maglev(UTM-02) project is leading by Korea Institute of Machinery & Materials and financially supported from the ministry of Commerce, Industry and Energy. The early development stagy of Maglev(UTM-02) was adopted the general urban railway pneumatic brake system due to the Korea domestic industrial environment. Currently there is two commercial operation Light Railway Train(LRT) system in Korea. One is U-Line in Uijungbu, and the other is Everline in Yongin. Both LRT systems are adopting high performance light weight hydraulic brake system. But those design and manufacturing core technology of the brake system is came from a major brake system companies located from aboard. Currently various studies have been continued to increase practical application and to improve competitiveness on performance for each sub-system of Maglev. Also in case of brake system, developing competitive hydraulic brake system is required. In this study, we have introduced the development process and performance evaluation of the new hydraulic brake system of Maglev.

경계조건변화에 따른 동력전달관로의 동특성 (Dynamic Characteristics of Pressure Propagation According to Boundary Condition Changes in a Transmission Line)

  • 나기대;유영태;김지환
    • 한국공작기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.75-82
    • /
    • 2002
  • Design for a quiet operation of fluid power system requires the understanding of noise and vibration characteristics of the system. It's not easy to analyze noise problem in hydraulic cylinder used in typical actuator Because they've got complex fluid dynamics. One of the fundamental problems associated with the hydraulic system is the pulsating flow in pipe lines, which can be tackled by the analysis under simplifying assumptions. The present study focuses on theoretic analysis and experimental study on the dynamics of laminar pulsating flow in a circular pipe. We analyze the propagation characteristics of the pressure pulse within a hydraulic pipe line taking into account the pulsating flow frequency variation. We also measure instantaneous pressure pulses within pipe line to identify the transfer functions. We conduct series of experiments to investigate the propagation characteristics of pressure pulse for various pressure of pulsating flow. The working fluid of the present study is ISO VG46 and the temperature ranges from 20 to $60^{\circ}$ with normal pressure at 4000kPa. The flow rate is measured by using an ultrasonic flow meter. Pressures at fixed upstream and downstream positions are measured concurrently. The electric signals of the pressure sensor are stored and analyzed using a system analyzer(PKE 983 series). The frequency is varied in the range of 10~500Hz. The Reynolds number is kept below 2,000. In the present study, boundary condition was varied by installing a surge tank and an orifice at the end of pipe. Experimental and theoretical results were compared each other under various boundary conditions.

위상간섭을 이용한 사축식 액셜 피스톤 펌프의 압력 맥동 감소 (A Reduction in Pressure Ripples of Axial Piston Pumps of Bent Axis by Phase Interface)

  • 김경훈;박경석;장주섭;김봉환;이규원;손권;신민호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1261-1265
    • /
    • 2003
  • Axial piston pumps of bent axis have been commonly used in hydraulic systems because of high pressure level. best efficiency, low shear force on pistons and low operating costs. The other side, they have a few demerits like that they have the relatively high number of moving parts and more discharge pressure ripples. Especially, the discharge pressure ripples bring about vibrations and noises in hydraulic system components such as connecting pipes and control valves, so that these deteriorate the stability and accuracy of the systems. Therefore, the hydraulic systems having the axial piston pumps of bent axis require the methods to reduce the discharge pressure ripples. So, the purpose of this paper is to reduce the discharge pressure ripples by the phase interference of pressure wave and to develope the analysis model of the pumps to predict the discharge pressure ripples. In this paper, the analysis model of the axial piston pumps of bent axis was developed using the AMESim software, and the reliability of that was verified by the comparison with the experimental results. The hydraulic pipeline with a parallel line was used as the method to generate the phase interference of pressure wave. the dynamics characteristics of the hydraulic pipeline with a parallel line were analyzed by a transfer matrix method. the usefulness of the phase interference of pressure wave was investigated through the experiment and simulation. The results from the experiment and simulation said that the phase interference of pressure wave by the hydraulic pipeline with a paralle linel could reduce the discharge pressure wave of the pump well. The analysis model of the axial piston pumps of bent axis developed in this paper and the method of the phase interference by the hydraulic pipeline with a parallel line are expected to be helpful to achieve the design of the pump and to reduce the discharge pressure wave of the pump effectively.

  • PDF

Delayed Operation Characteristics of Power Shuttle According to Hydraulic Oil Temperature in the Hydraulic Circuit of Agricultural Tractor

  • Park, Yoon-Na;Kim, Dae-Cheol;Park, Seung-Je
    • Journal of Biosystems Engineering
    • /
    • 제40권2호
    • /
    • pp.95-101
    • /
    • 2015
  • Purpose: During the start-up period, the response time of a hydraulic system increases in the winter because of the increased oil viscosity caused by the cold weather. The problems of delayed tractor starting and excessive wear of the clutch disk occur for these reasons. Therefore, this study develops an analysis model using the commercial hydraulic analysis program AMESim to examine the characteristics of delays in power shuttle starting at different oil temperatures. Methods: In the experiment, a tractor was stationary on a flat surface with the engine running at a constant speed of 1,080 rpm. The forward lever was then pressed to activate the power shuttle at three different oil temperatures, and the pressure changes were measured. The pressure on the forward clutch control valve was measured by a pressure gauge installed on the hydraulic line supplied to the transmission from the main valve. An analysis model was also developed and verified with actual tests. Results: The trend of the simulated pressures of the power shuttle is similar to that of the measured pressures, and a constant modulation period was observed in both the simulation and test results. However, the difference found between the simulation and test results was the initial pressure required to overcome the initial force of the clutch spring. Conclusions: This study also examines the characteristics of the delayed startup of the power shuttle at different oil temperatures through simulations.