• Title/Summary/Keyword: Hydraulic gradient CaO

Search Result 4, Processing Time 0.015 seconds

Considerations of Permeability of Converter Slag for Recycling in vertical drainage method (연직배수공법에 있어서 제강슬래그의 재활용을 위한 투수성 연구)

  • 이광찬;정규향;김영남;이문수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.93-112
    • /
    • 2000
  • The permeability of converter slag, replacing material of sand mat on improving soft clay foundation, was evaluated in the laboratory. The effects of grain size, flow water time and aging were investigated using sea and fresh water. Converter slag being submerged with fresh water, the coefficients of permeability in A and B samples less than 10mm grain sizes were measured as 6.52${\times}$10$\^$-2/cm/sec and 5.99${\times}$10$\^$-1/cm/sec, while changed as 1.88${\times}$10$\^$-2/cm/sec, 3.86${\times}$10$\^$-1/cm/sec under sea water condition. Also, the condition of turbulent flow may exit and was experimentally identified from the relationship between hydraulic gradient and seepage velocity. After 180 days on using sea water, the coefficients of permeability of sample A and B samples decreased ten times smaller than those initial values. And after that time continually decreased as for till 360 days. The reduction of permeability coefficient was considered to influence filled with voids in high-calcium quicklime(CaO). However, in-situ coefficient of permeability was practically satisfactory.

  • PDF

Considerations of Permeability of Converter Slag for Recycling in vertical drainage method (연직배수공법에 있어서 제강슬래그의 재활용을 위한 투수성 연구)

  • 이광찬;정규향;김영남;이문수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.12-31
    • /
    • 2000
  • The permeability of converter slag, replacing material of sand mat on improving soft clay foundation, was evaluated in the laboratory. The effects of grain size, flow water time and aging were investigated using sea and fresh water. Converter slag being submerged with fresh water, the coefficients of permeability in A and B samples less than 10mm grain sizes were measured as 6.52${\times}$10$\^$-2/cm/sec and 5,99${\times}$10$\^$-1/cm/sec, while changed as 1,88${\times}$10$\^$-2/cm/sec, 3.86${\times}$10$\^$-1/cm/sec under sea water condition. Also, the condition of turbulent flow may exit and was experimentally identified from the relationship between hydraulic gradient and seepage velocity. After 180 days on using sea water, the coefficients of permeability of sample A and B samples decreased ten times smaller than those initial values. And after that time continually decreased as for till 360 days. The reduction of permeability coefficient was considered to influence filled with voids in high-calcium quicklime(CaO). However, in-situ coefficient of permeability was practically satisfactory.

  • PDF

Considerations of Permeability of Converter Slag for Recycling (재활용을 위한 전로슬래그의 투수성 고찰 (I))

  • 이광찬;이문수
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.69-83
    • /
    • 1999
  • The permeability of converter slag, replacing material of sand mat on improving soft clay foundation, was evaluated in the laboratory. The effects of grain size, flow water time and aging were investigated using sea and fresh water. In the case of converter slag submerged with fresh water, the coefficients of permeability in A and B samples less than 10 mm grain sizes were measured as $6.52\times10^{-2}cm\; per\; sec\; and\; 5.99\times10^{-1}/cm$ per sec respectively, while they were $1.88\times10^{-2}/cm\; per\; sec,\; 3.86\times10^{-1}/cm$ per sec respectively under sea water condition. Also, the condition of turbulent flow may exit and was experimentally identified from the relationship between hydraulic gradient and seepage velocity. After 100 days under sea water condition, the coefficients of permeability of A and B samples decreased ten times than initial values. The reduction of permeability coefficient was considered to result from the filling of voids in high-calcium quicklime(CaO).

  • PDF

Considerations of Permeability of Converter Slag by Laboratory and In-situ Tests (실내 및 현장시험에 의한 제강 슬래그의 투수성 고찰)

  • 이문수;이광찬
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.93-105
    • /
    • 2001
  • The permeability of converter slag, replacing material of sand mat on improving soft clay foundation, was evaluated in the laboratory as well as in situ test. Effects of grain size, flow water time and aging were investigated using sea and fresh water Converter slag which has a grain size less than 10mm were submerged with fresh water and sea water. In fresh water, the coefficients of permeability in samples A and B were measured as 4.50${\times}$10$^{-2}$ cm per second and 1.20${\times}$10$^{-1}$ cm per second, respectively while as 1.88$\times$10$^{-2}$ cm per second and 3.86$\times$10$^{-1}$ cm per second in sea water. The condition of turbulent flow may exit and was experimentally certified based on the relationship of hydraulic gradient and seepage velocity. After 180 days in using sea water, the coefficients of permeability of samples A and B decreased ten times smaller than those initial values, and after that time continually decreased as for till 360 days. Finally, filling with voids in high-calcium quicklime(CaO) may result in the reduction of coefficient of permeability. In-situ coefficient of permeability however was Practically satisfactory.

  • PDF