• Title/Summary/Keyword: Hydraulic convergence

Search Result 138, Processing Time 0.022 seconds

Automatic Parameter Estimation of Hydrogeologic Field Test around Underground Storage Caverns by using Nonlinear Regression Model (비선형 회귀모형을 이용한 지하저장공동 주변 현장수리지질시험 매개변수의 자동 추정)

  • Chung, Il-Moon;Cho, Won-Cheol;Kim, Nam-Won
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.359-369
    • /
    • 2008
  • For the design and effective management of underground storage caverns, preliminary investigation on the hydrogeologic parameters around caverns and analysis on the groundwater flow must be carried out. The data collection is very imporatnat task for the hydrogeologic design so various hydraulic tests have been performed. When analyzing the injection/fall off test data, existing graphical method to estimate the parameters in Theis' equation is widely used. However this method has some sources of error when estimating parameters by means of human faults. Therefore the method of estimating parameters by means of statistical methods such as regression type is evaluated as a useful tool. In this study, nonlinear regression analysis for the Theis' equation is suggested and applied to the estimation of parameters for the real field interference data around underground storage caverns. Damping parameter which reduce the iteration numbers and inhance the convergence is also introduced.

Surface soil moisture memory using stored precipitation fraction in the Korean peninsula (토양 내 저장 강수율을 활용한 국내 표층 토양수분 메모리 특성에 관한 연구)

  • Kim, Kiyoung;Lee, Seulchan;Lee, Yongjun;Yeon, Minho;Lee, Giha;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.111-120
    • /
    • 2022
  • The concept of soil moisture memory was used as a method for quantifying the function of soil to control water flow, which evaluates the average residence time of precipitation. In order to characterize the soil moisture memory, a new measurement index called stored precipitation fraction (Fp(f)) was used by tracking the increments in soil moisture by the precipitation event. In this study, the temporal and spatial distribution of soil moisture memory was evaluated along with the slope and soil characteristics of the surface (0~5 cm) soil by using satellite- and model-based precipitation and soil moisture in the Korean peninsula, from 2019 to 2020. The spatial deviation of the soil moisture memory was large as the stored precipitation fraction in the soil decreased preferentially along the mountain range at the beginning (after 3 hours), and the deviation decreased overall after 24 hours. The stored precipitation fraction in the soil clearly decreased as the slope increased, and the effect of drainage of water in the soil according to the composition ratio of the soil particle size was also shown. In addition, average soil moisture contributed to the increase and decrease of hydraulic conductivity, and the rate of rainfall transfer to the depths affected the stored precipitation fraction. It is expected that the results of this study will greatly contribute in clarifying the relationship between soil moisture memory and surface characteristics (slope, soil characteristics) and understanding spatio-temporal variation of soil moisture.

Horizontal-Axis Screw Turbine as a Micro Hydropower Energy Source: A Design Feasibility Study (마이크로 수력 에너지원의 수평축 스크류 터빈 : 설계 타당성 연구)

  • SHAMSUDDEEN, MOHAMED MURSHID;KIM, SEUNG-JUN;MA, SANG-BUM;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.1
    • /
    • pp.95-104
    • /
    • 2022
  • Micro hydropower is a readily available renewable energy source that can be harvested utilizing hydrokinetic turbines from shallow water canals, irrigation and industrial channel flows, and run-off river stream flows. These sources generally have low head (<1 m) and low velocity which makes it difficult to harvest energy using conventional turbines. A horizontal-axis screw turbine was designed and numerically tested to extract power from such low-head water sources. The 3-bladed screw-type turbine is placed horizontally perpendicular to the incoming flow, partially submerged in a narrow water channel at no-head condition. The turbine hydraulic performances were studied using Computational Fluid Dynamics models. Turbine design parameters such as the shroud diameter, the hub-to-shroud ratios, and the submerged depths were obtained through a steady-state parametric study. The resulting turbine configuration was then tested by solving the unsteady multiphase free-surface equations mimicking an actual open channel flow scenario. The turbine performance in the shallow channel were studied for various Tip Speed Ratios (TSR). The highest power coefficient was obtained at a TSR of 0.3. The turbine was then scaled-up to test its performance on a real site condition at a head of 0.3 m. The highest power coefficient obtained was 0.18. Several losses were observed in the 3-bladed turbine design and to minimize losses, the number of blades were increased to five. The power coefficient improved by 236% for a 5-bladed screw turbine. The fluid losses were minimized by increasing the blade surface area submerged in water. The turbine performance was increased by 74.4% after dipping the turbine to a bottom wall clearance of 30 cm from 60 cm. The final output of the novel horizontal-axis screw turbine showed a 2.83 kW power output at a power coefficient of 0.63. The turbine is expected to produce 18,744 kWh/year of electricity. The design feasibility test of the turbine showed promising results to harvest energy from small hydropower sources.

Development of a Test Rig with Hydraulic Circuit for the Front Axle Suspension System of an Agricultural Tractor (농용트랙터 전방차축 현가장치를 위한 유압회로 시험기 개발)

  • Lee, Jung-Hwan;Cho, Bong-Jin;Kim, Hak-Jin;Koo, Kang-Mo;Ki, In-Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.71-71
    • /
    • 2017
  • 농용트랙터의 운전자는 작업, 주행으로 인한 유해한 저주파 진동에 장시간 노출된다. 이에 따라 운전자에게 전달되는 노면 진동을 감소시켜주기 위한 전방차축 현가장치의 역할이 커지고 있다. 트랙터의 전방차축 현가장치는 주로 유압식으로 설계되어 있으며 이를 구성하는 유압요소 선정이 현가장치의 성능에 중요한 영향을 미친다. 하지만, 실제와 유사한 조건에서 트랙터 차체 무게만큼 큰 부하를 제공하여 유압회로의 성능을 실험하는 것은 비용과 시간 측면에서 비효율적이다. 본 연구에서는 이를 대체하기 위하여 개별 유압요소의 성능을 테스트 할 수 있는 현가장치 유압회로 요인 시험기를 설계제작 하였다. 이를 이용하여 개별 부품의 성능곡선을 센서를 이용 측정하였고 얻은 특성값을, 구성한 유압 시뮬레이션 모델에 반영하여 실제조건의 유압특성을 얻을 수 있는 유효한 시뮬레이션 모델 개발에 활용하였다. 또한, 실험실 환경에서 유압식 현가장치를 간소화 시킨 형태로 유압회로의 성능을 예비시험해 볼 수 있도록 다양한 센서를 장착 데이터를 취득할 수 있도록 하였다. 개발한 요인 시험기는 하부에 설치된 가진 실린더를 이용하여 상부에 설치된 현가장치 실린더의 스트로크 변위와 속도에 따른 힘을 측정할 수 있도록 구성하였다. 이를 위해 현가장치 실린더의 헤드부와 로드부에 각각 압력센서를 설치하였으며 헤드부, 로드부의 압력 차이와 로드셀을 이용해 측정한 가진 실린더의 힘의 관계를 확인하였다. 상부의 현가 실린더 장치는 복동 형태로 제작되어 헤드부, 로드부 양쪽 방향으로 유량이 흐를 수 있도록 설계되었다. 이를 이용해 헤드부와 로드부 사이에 어큐뮬레이터, 가변 오리피스, 릴리프 밸브 등으로 유압회로를 구성하였으며 어큐뮬레이터 용량에 따른 힘의 변화, 가변 오리피스의 개도량에 따라서 전달되는 힘의 크기 등을 측정하였다. 하부의 가진 실린더는 사인파, 삼각파, 계단 입력, DC 레벨 등의 신호를 발생시킬 수 있도록 제작되었다. 신호의 주파수는 0~4Hz, 범위에서 사용자가 조절할 수 있도록 설정되었으며 계단응답 성능 측정 시험을 평가한 결과 정상상태오차는 0.470mm~0.536mm, 입상시간은 0.194초~0.202초, 정착시간은 0.230초~0.421초로 나타났다.

  • PDF

Micromorphological Changes of Rill Development under Simulated Rainfall and Inflow on Steep Slopes (모의 강우와 유입수에 의해 급경사면에서 발달한 세류의 미세지형 변화)

  • Shin, Seung Sook;Sim, Young Ju;Son, Sang Jin;Park, Sang Deog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Interrill erosion dominates in forest areas, and the erosion rate in surface-disturbed areas is significantly increased by the development and expansion of rill. In this study, soil erosion experiments using simulated rainfall and inflow were performed to understand the development and the micromorphological changes of rill on steep slopes. The characteristic factors of the micromorphology, such as the rill cross section, rill volume, rill density, rill order, and rill sharpness, were analyzed according to steepness and location (upper or lower) of slope. The head-cut of the simultaneous incised rills by rainfall simulation moved rapidly upslope, and the randomly developed rills expanded deeply and widely with their connection. The rill cross section evolved to downslope gradually increased. The rill volume occupied about 78 % of the sediment volume, confirming that the contribution of the sediment from the rill erosion is greater than that of the interrill erosion. Although the rate of increase in rill order slowed as the slope increased, the total length and density of the rill generally increased. As the slope increased from 15° to 20°, the bed incision of rills became larger than the sidewall expansion, and the rill sharpness increased by 1.6 times. The runoff coefficient on the lower slope decreased by 12.3 % than that on the upper slope. It was evaluated that the subsoil exposures and formation changes by the rill expansion increased the infiltration rate. Although the sediment accompanying the rills generally increased with slope increase, it was directly influenced by the hydraulic velocity of enhanced rill with the local convergence and expansion in the process of the rill evolution.

Domain Knowledge Based Approach for Design Optimization of Arch Dams Using Genetic Algorithms

  • Dongsu Kim;Sangik Lee;Jonghyuk Lee;Byung-hun Seo;Yejin Seo;Dongwoo Kim;Yerim Jo;Won Choi
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1321-1321
    • /
    • 2024
  • Concrete arch dams, unlike conventional concrete gravity dams, have thin arch-shaped cross sections and must be designed considering a three-dimensional shape. In particular, double-curvature arch dams, which have arch-shaped vertical and horizontal sections, require careful consideration during design due to their unique shape. Although stress analysis is complex, and various factors need to be considered during the design, these dams offer economic advantages as they require less material. Consequently, numerous double-curvature arch dams have been constructed worldwide, and ongoing research focuses on optimizing their shapes. In this study, an efficient optimization algorithm was developed for the shape optimization of concrete arch dams with double-curvature using genetic algorithms and improved population initializing technique. The developed technique utilized domain knowledge in the field of arch dams to generate an excellent initial population. To assess the relevance of domain knowledge, an investigation was conducted on the accumulated knowledge and empirical formulas from literature. Two pieces of domain knowledge can be gleaned from the iterative structural design experiences associated with arch dams. First, it concerns the thickness of the central cantilever of an arch dam. For minimum tensile stress, it is best to make the thickness as thin as possible at the dam crest and gradually become thicker as it goes down. The second aspect concerns the sliding stability of the arch dam, which depends on the central angle of the horizontal section. This angel is important for stability because the plane arch serves to transfer the hydraulic load from the reservoir to both abutments. Also, preliminary design formulas for arch dams from a manual written by the United States Bureau of Reclamation (USBR) were used. On the other hand, since domain knowledge is based on engineering experiences and data from existing dams, its usability should be verified by comparing it with the results of design optimization performed by classic genetic algorithms. To validate the performance of the optimization algorithm with the improved population initialization technique, a test site with an existing dam was selected, and algorithmic application tests were conducted. Stress analysis is performed for each design iteration, evaluating constraints and calculating fitness as the objective function. The results confirmed that the algorithm developed in this study exhibits superior performance in terms of average fitness and convergence rate compared to classic genetic algorithms.

Evaluation of applicability of linkage modeling using PHABSIM and SWAT (PHABSIM과 SWAT을 이용한 연계모델링 적용성 평가)

  • Kim, Yongwon;Byeon, Sangdon;Park, Jinseok;Woo, Soyoung;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.819-833
    • /
    • 2021
  • This study is to evaluate applicability of linkage modeling using PHABSIM (Physical Habitat Simulation System) and SWAT (Soil and Water Assessment Tool) and to estimate ecological flow for target fishes of Andong downstream (4,565.7 km2). The SWAT was established considering 2 multi purpose dam (ADD, IHD) and 1 streamflow gauging station (GD). The SWAT was calibrated and validated with 9 years (2012 ~ 2020) data of 1 stream (GD) and 2 multi-purpose dam (ADD, IHD). For streamflow and dam inflows (GD, ADD and IHD), R2, NSE and RMSE were 0.52 ~ 0.74, 0.48 ~ 0.71, and 0.92 ~ 2.51 mm/day respectively. As a result of flow duration analysis for 9 years (2012 ~ 2020) using calibrated streamflow, the average Q185 and Q275 were 36.5 m3/sec (-1.4%) and 23.8 m3/sec (0%) respectively compared with the observed flow duration and were applied to flow boundary condition of PHABSIM. The target stream was selected as the 410 m section where GD is located, and stream cross-section and hydraulic factors were constructed based on Nakdong River Basic Plan Report and HEC-RAS. The dominant species of the target stream was Zacco platypus and the sub-dominant species was Puntungia herzi Herzenstein, and the HSI (Habitat Suitability Index) of target species was collected through references research. As the result of PHABSIM water level and velocity simulation, error of Q185 and Q275 were analyzed -0.12 m, +0.00 m and +0.06 m/s, +0.09 m/s respectively. The average WUA (Weighted Usable Area) and ecological flow of Zacco platypus and Puntungia herzi Herzenstein were evaluated 76,817.0 m2/1000m, 20.0 m3/sec and 46,628.6 m2/1000m, 9.0 m3/sec. This results indicated Zacco platypus is more adaptable to target stream than Puntungia herzi Herzenstein.

Convergence of Remote Sensing and Digital Geospatial Information for Monitoring Unmeasured Reservoirs (미계측 저수지 수체 모니터링을 위한 원격탐사 및 디지털 공간정보 융합)

  • Hee-Jin Lee;Chanyang Sur;Jeongho Cho;Won-Ho Nam
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1135-1144
    • /
    • 2023
  • Many agricultural reservoirs in South Korea, constructed before 1970, have become aging facilities. The majority of small-scale reservoirs lack measurement systems to ascertain basic specifications and water levels, classifying them as unmeasured reservoirs. Furthermore, continuous sedimentation within the reservoirs and industrial development-induced water quality deterioration lead to reduced water supply capacity and changes in reservoir morphology. This study utilized Light Detection And Ranging (LiDAR) sensors, which provide elevation information and allow for the characterization of surface features, to construct high-resolution Digital Surface Model (DSM) and Digital Elevation Model (DEM) data of reservoir facilities. Additionally, bathymetric measurements based on multibeam echosounders were conducted to propose an updated approach for determining reservoir capacity. Drone-based LiDAR was employed to generate DSM and DEM data with a spatial resolution of 50 cm, enabling the display of elevations of hydraulic structures, such as embankments, spillways, and intake channels. Furthermore, using drone-based hyperspectral imagery, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were calculated to detect water bodies and verify differences from existing reservoir boundaries. The constructed high-resolution DEM data were integrated with bathymetric measurements to create underwater contour maps, which were used to generate a Triangulated Irregular Network (TIN). The TIN was utilized to calculate the inundation area and volume of the reservoir, yielding results highly consistent with basic specifications. Considering areas that were not surveyed due to underwater vegetation, it is anticipated that this data will be valuable for future updates of reservoir capacity information.