• Title/Summary/Keyword: Hydraulic control system

Search Result 1,176, Processing Time 0.03 seconds

A Study on the Hydraulic Cylinder with built-in Displacement and Thrust Control Function

  • Kitagawa, Ato;Wu, Chunnan;Park, Sung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1157-1161
    • /
    • 2003
  • A novel actuator with built-in the displacement and the thrust control function is presented in this paper. This actuator is a kind of compact hydraulic cylinder system which consists of a hydraulic cylinder, a spool, a sleeve, a mechanical feedback mechanism and a stepping motor. The displacement and thrust is in proportion to the rotational angle of stepping motor by the mechanical feedback. In order to investigate characteristics of this actuator, simulation study and preliminary experiments are conducted. Through the preliminary experiment this actuator is very effective in the control for displacement and thrust. Also, it became obvious that the stability of system can be adjusted by using the restrictor with the effect of velocity feedback. Furthermore, this paper explained that a flexible compliance control could be realized by adjusting the feedback weighting in the actuator.

  • PDF

Model-Free Torque Control of Rotary Electro-Hydraulic Actuator using Mechanical Impedance Reduction (기계임피던스 감소기법을 이용한 회전형 전기-유압식 구동기의 모델 없는 토크제어방법)

  • Lee, Woongyong;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.77-89
    • /
    • 2020
  • This paper proposes a simple and intuitive model-free torque-tracking control for rotary electro-hydraulic actuators. The undesirable natural-velocity-feedback effect is discussed by introducing mechanical impedance into the electro-hydraulic actuation system. The proposed model-free torque control comprises inner- and outer-loop control to achieve two control objectives. Inner-loop control reduces the mechanical impedance passively and optimally. To improve the tracking accuracy, a certain form of proportional-integral-derivative control is applied to the outer loop. The robustness of the proposed closed-loop system against external disturbances is demonstrated by transforming the two-loop control structure into a disturbance observer form. The proposed method is validated on a single joint electro-hydraulic actuator.

A Study on the Hydraulic Brake Application of Electrical Multiple Unit (전동차에 유압제동장치 적용방안 연구)

  • Lee Woo-Dong
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1355-1357
    • /
    • 2004
  • The hydraulic brake system is recently apply to the AGT system such merit as installation is convenient and brake force is stronger than pneumatic brake system. The hydraulic brake system consist of brake operating unit, electronic control unit, air compressor and pneumatic/hydraulic tranducer. The components of it are controlled and designed to perform the function of brake system. Therefore, This paper design and the hydraulic brake system and propose the derection of development for Urban Transit System.

  • PDF

Development of 1-axis Exciter for a Seat Vibration Test of Agricultural Tractors(I) - Design of PID Controller for Position Control of 1-axis Exciter - (농용트랙터용 운전자 좌석 진동 시험을 위한 1축 가진 시험기 개발(I) - 1축 가진 시험기 위치 제어를 위한 PID 제어기 설계 -)

  • Yu, Ji-Hoon;Choi, Young-Kyun;Lee, Kyu-Cheol;Kim, Young-Joo;Ryu, Young-Sun;Ryuh, Kwan-Hee
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.305-314
    • /
    • 2009
  • The purpose of this paper was to design an effective control system of 1-axis exciter for a seat vibration test of agricultural tractors using MATLAB simulation. The developed simulation model was composed with a hydraulic pump, a hydraulic servo valve, a hydraulic cylinder and load system. Also it was verified by comparing the simulation results with experimental results of actual control system in order to optimize the control performance. And in order to improve its control performance, the designed PID controller in this research was tuned using Ziegler-Nichols 2nd law and zero's moving method of PID controller's transfer function. As the result of these research, the developed position control system was able to control the system's position accurately within 5% errors.

Force Control of Hybrid Actuator Using Learning Vector Quantization Neural Network

  • Aan Kyoung-Kwan;Chau Nguyen Huynh Thai
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.447-454
    • /
    • 2006
  • Hydraulic actuators are important in modern industry due to high power, fast response, and high stiffness. In recent years, hybrid actuation system, which combines electric and hydraulic technology in a compact unit, can be adapted to a wide variety of force, speed and torque requirements. Moreover, the hybrid actuation system has dealt with the energy consumption and noise problem existed in the conventional hydraulic system. Therefore, hybrid actuator has a wide range of application fields such as plastic injection-molding and metal forming technology, where force or pressure control is the most important technology. In this paper, the solution for force control of hybrid system is presented. However, some limitations still exist such as deterioration of the performance of transient response due to the variable environment stiffness. Therefore, intelligent switching control using Learning Vector Quantization Neural Network (LVQNN) is newly proposed in this paper in order to overcome these limitations. Experiments are carried out to evaluate the effectiveness of the proposed algorithm with large variation of stiffness of external environment. In addition, it is understood that the new system has energy saving effect even though it has almost the same response as that of valve controlled system.

A Study on the Application of the Real-Time Simulator (실시간 모의시험기의 적용에 관한 연구)

  • 장성욱;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.191-191
    • /
    • 2000
  • Hydraulic servo system is difficult to be made up and each component is very expensive, it takes long for actual system to make and test and it costs a high price. Because of these characteristics of hydraulic servo system, a real time simulator that could describe behavior of real system is highly demanded, without composing real hydraulic system. So, many studies have been (lone on these subjects and many simulators are developed with superiority. Since the nonlinearity of a hydraulic system common simulator have composed of many calculative times byusing DSP(Digital Signal processing) and have made it possible to find the situations of the system in real time, calculating hydraulic simulation and controller separately. In this study, we suggest real-time simulator that could describe real system without ordinary DSP card. This simulator is composed of 80196kc and personal computer. DSP card that has calculated complex numerical equation is supplanted by personal computer and 80196kc generates control signals independently out of the personal computer. In all process, personal computer is synchronized with one-board microprocessor within sampling time in the closed loop system. This makes it possible to be described in hydraulic servo system in real time. And to make a comparison between the result of the real-time simulator and a hydraulic servo system.

  • PDF

Modeling and PID Control of an Electro-Hydraulic Servo System (전기유압 서보시스템의 모델링과 PID 제어)

  • Lee, Se Jin;Kim, Cheol Jae;Kang, Yong Ju;Choi, Soon Woo;Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.16-22
    • /
    • 2019
  • The electro-hydraulic training device (TP511) provided by Festo Didactic are widely used, but teaching materials do not include mathematical modeling. Thus, there is a limit for full-scale learning about the electro-hydraulic servo system by using this equipment. In this study, for the purpose of improving students' understanding of the classical control and modern control Festo's electro-hydraulic servo training device (TP511) was mathematically modeled and parameter values were calculated by examining the characteristics of each component. And P, PI, PD, and PID controllers highly used in the industrial field, were designed by using the root locus method to achieve the optimal gains and used for simulation and experiments using the Festo's electro-hydraulic servo training apparatus. The validity of the derived mathematical model and the calculated parameter values were verified through simulation and experiment. It was found that the p control can achieve the control target more effectively than the pid control for Festo's electro-hydraulic servo training system by using the root locus method.

Control Characteristics Improvement of Single Rod Hydraulic Cylinder Subjected to Varying Load (가변하중을 받는 유압실린더의 제어특성개선)

  • Yum, Man-Oh
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.46-52
    • /
    • 2003
  • For position control of electro-hydraulic servo system, single rod cylinders and double rod cylinders are used. Single rod cylinders have simple structure for manufacturing but different volume ratio of two sides induce to non-linearity in process of then mathematical modeling. So only with conventional PID control method it is difficult to control single rod cylinders precisely. For mole precise position control of single rod cylinders, a controller which is inserted a velocity feedback PID controller and MRAC controller are proposed. With experiment control performances of three control methods are compared. In case of experiment, for external varying load to the system, a hydraulic cylinder and a pressure control valve are used. In conclusion a MRAC is considered a suitable control method for external varying load.

  • PDF

Development of a Virtual Excavator using SimMechanics and SimHydraulic (SimMechanics SimHydraulic을 이용한 가상 굴삭기 개발)

  • Le, Q.H.;Jeong, Y.M.;Nguyen, C.T.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • Excavation is an important work in mining, earth removal and general earthworks. Nowadays, automation in excavator has been studied by several researchers. In the excavator research methods, simulation is one of the low cost methods for applied to test safely. In this paper, designed a virtual hydraulic excavator that with the control and the dynamic. At first, the simulation of hydraulic system for excavator's attachment such as boom, arm and bucket using Matlab/Simhydraulic is presented. Second, the dynamic model of excavator is distributed to combine with the hydraulic system. For controlling this system, electric joysticks are used to operate the orifice open areas in Main Control Valve. The simulation result is described to analysis the performance of this virtual excavator.

A Study on the Robust Position Control of Single-rod Hydraulic System (편로드 유압시스템의 강인 위치제어에 관한 연구)

  • Cho, Taik-Dong;Seo, Song-Ho;Yang, Sang-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.128-135
    • /
    • 1999
  • A driving simulators of aircraft and vehicle may consist of hydraulic power systems with many single-rod cylinders. The single-rod hydraulic systems are convenient but need more robust control scheme in order to achieve a reliable performance against the wide range of operating disturbances and the inherent model uncertainties. $H_{\infty}$ control scheme was implemented to the 2 degree-of-freedom hydraulic device similar to the simple driving simulator. With the reasonable disturbances from sensor, base and pump and also with the linearization of model, the simulation and experimental results showed good agreements.

  • PDF