• Title/Summary/Keyword: Hydraulic Valve

Search Result 605, Processing Time 0.03 seconds

Friction Characteristics between the Cylinder Block and the Spherical Valve Plate in Hydraulic Axial Piston Pump (유압 액셜 피스톤 펌프에서 실린더 블록과 구면 밸브 플레이트 사이의 마찰 특성)

  • 김종기;오석형;정재연
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.23-28
    • /
    • 1998
  • To increase the efficiency of the hydraulic axial piston pumps, it is need to know the various characteristics in the sliding contact parts of them. Especially, friction characteristics between the cylinder block and the valve plate in the hydraulic axial piston pumps plays an important role to high power density. In this paper, we tried to clarify friction characteristics between the cylinder block and the spherical valve plate in bent-axis-type axial piston pump in experimentally. Results are arranged as follow; (1) friction torque between the cylinder block and the spherical valve plate has a proportional relation to weight or rotational speed, and is strongly affected by temperature. (2) Friction torque strongly depends on force balance ratio in valve plate. (3) In this experiment, lubrication condition between the cylinder block and the spherical valve plate is under hydrodynamic lubrication.

A Study on Hydraulic Pressure Reducing Valve for Active Suspension Systems (현가시스템용 압력제어밸브에 관한 연구)

  • Kim, Dong-Won;Yang, Seung-Hyun;Lee, Seok-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2528-2530
    • /
    • 2005
  • In this paper, a study on the analysis and design of an electro-hydraulic pressure reducing valve for active suspension system of car is fulfilled. Also, the structurally improved direct-acting electro-hydraulic pressure reducing valve is proposed to satisfy the performance that active suspension system requires. To prove the possibility whether the proposed valve can be used for active suspension system or not, the mathematical modeling and analysis for this valve is fulfilled and the experiment of response to controlled pressure is achieved. Here we conformed the response speed to controlled pressure of the structurally improved valve changed for the better by modifying the shape of spool such as the structure which make use of the power of controlled pressure derived from the area difference between two section areas of valve spool.

  • PDF

Development of Electronic Proportional Control Valve with LVDT for Spool Displacement Feedback and Its Performance Evaluation (스풀 변위 피드백을 위한 LVDT 적용 비례전자제어밸브의 개발 및 성능평가)

  • Shin, Haeng-Bong;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.160-166
    • /
    • 2016
  • This study proposes the development and performance evaluation of electronic proportional control valve having an LVDT. The electronic proportional control valve is composed of hydraulic valve, proportional solenoid and controller. LVDT is to reduce the steady state error for the reference input of the controller by the feedback signal to detect the displacement of the spool. Designed LVDT is applied to the common proportional valve. In order to evaluate the performance of the developed valve, the hydraulic test equipment was developed and flow tests were carried out. From experimental results, it was proved that the hysteresis was less than 1% based on the maximum flow rate.

The Analysis of Dynamic Characteristics and the Control of Compressed Gas Expulsion System Using Electro-Hydraulic Servo Valve (전기.유압 서보밸브를 이용한 압축가스 방출시스템의 동특성 해석 및 제어)

  • Kim Y.M.;Kim J.K.;Han M.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.710-714
    • /
    • 2005
  • A dynamical analysis and PID control of a compressed gas expulsion system is performed. The purpose of this study is to develop a compressed gas discharging system and to verify the validity of the system. The electro-hydraulic servo valve is modeled as a 3th order transfer function to calculate flow force affecting expulsion valve is significantly considered. The friction force in the expulsion valve is considered as a nonliner model of stribeck effect. The dynamic characteristics of this system is examined by the computer simulation. The position control of the expulsion valve is performed by PID controller.

  • PDF

Static and Dynamic Characteristics of Electro - hydraulic Proportional Throttle Control Valve (전자 유압식 비례 교축 제어 밸브의 특성)

  • 오인호;이일영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.87-99
    • /
    • 1993
  • Nowadays, the cartridge valve can be controlled proportionally in remote place by adopting proportional solenoid and it becomes widely used as control component in hydraulic systems. Especially, multi stage proportional valve is attractive because it consumes less input power though its characteristics might slightly be defected. But, the system parameter should be carefully chosen to obtain optimistic characteristics. This study concerning three stage proportional throttle control valve is purposed to examine the influences of paameters to the dynamic characteristics. The typical transient and frequency responses of proportional throttle control valve were inspected through the experiments and compared to those derived from the theoritical analyses. And it was confirmed that the analyses are appropriate. Then the influences of various system parameters to the dynamic characteristics were examined by means of simulations. For the analyses, the basic equations derived from lumped model were linearized and the linearized equations were transformed to the transfer functions between inputs and outputs. Then the transient responses and frequency responses were obtained from transfer functions. 1. It is appropriate to estimate the dynamic characteristics of valve which has relatively sophisticated structure by means of system analyses using linearized equations. 2. Though the valve has two pilot stages, fairly good characteristics can be obtained by carefully choosing system parameters. 3. Main valve very quickly follows the movement of second pilot valve when the parameters of main valve(the oil supply passage and discharge passage fpr second pilot valve) are appropriately chosen.

  • PDF

A Study on the Analysis and Development of Proportional Pressure Control Valve for Vehicle Active Suspension System via Hydraulics Actuator (유압 액추에이터를 고려한 능동 현가장치용 비례압력제어밸브의 해석과 개발)

  • 윤영환;장주섭;최명진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.111-121
    • /
    • 2000
  • Generally, the hydraulic pressures are used for transmitting the force. Therefore, a highly reliable and inexpensive control system has been required for a passenger car. The control-ability of active suspension system is strongly affected by the performance of pressure control valve in the view of dynamic response and energy consumption. In this study, we suggested main design parameters for the optimum design of proportional pressure control valve. The mathematical simulation model was derived from the quarter type model which consisted a valve and hydraulic damper for the purpose of analyzing the valve characteristics. Experiments were performed to confirm the performance of the valve and computations were carried out to ascertain the usefulness of the developed program. The results from computations fairly coincide with those from experiments. This has been achieved by developing the servomechanism valve which comprises the simple combination of a solenoid, a spool valve and a poppet valve. The results from experiments and computations show the development process of optimum proportional pressure control valve in the hydraulics system.

  • PDF

Study on Performance Test of Plate Type ER-Valves (평판형 ER-Valve의 성능실험에 관한 연구)

  • Jang S.C.;Yum M.O.;Kim D.T.;Park J.B.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.321-324
    • /
    • 2002
  • Hydraulic valve control the pressure and the How of fluid by the hydraulic oil transfered from pump but the ER fluid consists of solid particles of micrometer in size and insulating oil so in the general hydraulic valve. We invented ER-Valve using ER fluid as working fluid. The ER fluid, working fluid of ER-Valve is a functional fluid to represent the feature of fluid according to strength of electric field. In this research we made our own 4 types of plate type ER-Valve which has same surface but different width and length and then we conducted performance test. We measured flow rate and pressure drop of fluid which is flowing in the ER-Valve according to the electric field strength to conduct this test. We modeling ER-Valve relating to ER-Valve system and yield shear stress according to the strength of electric field. We used the pressure drop according to the strength of electric field by differential pressure gauge in the our own made ER-Valve. This test reviewed experimental the special changes of ER-Fluid in the steady flow condition.

  • PDF

A Study on the Dynamic Characteristics of Center Pivot Rocker Arm Type OHC Valve Trains with Hydraulic Lash Adjuster (유압식 밸브 간극 조정장치를 가진 중심지지 로커암형 OHC 밸브기구의 동특성에 관한 연구)

  • 김도중;신병현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.97-108
    • /
    • 1996
  • A modeling technique is proposed for dynamic simulations of OHC valve trains with HLA(hydraulic lash adiuster). HLA is expressed by an air-oil mixture model considering HLA leak-down and aeraton effects. A compact nonlinear equation is derived which describe the short term dynamic behavior of the HLA. Valve spring is analyzed by a distributed parameter model including nonlinear characteristics in the spring surge phenomena. Global behavior of the remaining valve train is expressed by a lumped mass model. The experiental results prove that the simulation model developed here is accurate and useful for the dynamic simulations of OHC valve trains with HLA.

  • PDF

Development of Tractor Three-point Hitch Control System using Proportional Valve (비례밸브를 이용한 트랙터 3점 히치 제어 시스템 개발)

  • Lee, Sang-Sik;Park, Won-Yeop
    • Journal of Biosystems Engineering
    • /
    • v.36 no.2
    • /
    • pp.89-95
    • /
    • 2011
  • Tractor implements are mainly utilized for the tillage operation. The proposed hydraulic system control was implemented to experimental apparatus. An implement control system for tractor using proportional valve was fabricated to improve the working efficiency. Hydraulic circuit included the proportional solenoid valve and on/off solenoid valve and so on. This paper shows results of a specification and design of an implement control system for tractor using proportional valve for automation. It was conducted to evaluate response characteristics of the designed implement control system under experimental conditions of various input flow rates. The results of experiments showd that the response characteristics was sufficient to be used as the implement control system.

Dynamic Characteristics Analysis for Optimal Design of Flow Divider Valve (Flow Divider Valve의 최적설계를 위한 동특성 해석)

  • Hwang, Tae-Yeong;Park, Tae-Jo
    • 연구논문집
    • /
    • s.29
    • /
    • pp.123-130
    • /
    • 1999
  • Flow divider valve, a kind of hydraulic control valve to divide the flow from one input line to two output line uniformly, should be able to keep the constant flow to output lines despite of the change load or supply pressure. Having 5-10% flow diving error in commercial hydraulic products is one of main source of the accumulated error caused hydraulic system problem and demands the development of flow divider valve to control flow more accurately, In this paper, the dynamic characteristics of flow divider valve are investigated by the numerical estimation of the spool motion considered the external supply force. The optimum design of flow divider valve are proposed to reduce the flow diving error. For the dynamic characteristics analysis, the change of sectional area of fixed and variable orifice, and spool are studied when the input signal is accepted to a constant load.

  • PDF