• Title/Summary/Keyword: Hydraulic Valve

Search Result 605, Processing Time 0.026 seconds

Measurement of Fluid Film Thickness on the Valve Plate in Oil Hydraulic Axial Piston rumps (I) - Bearing Pad Effects -

  • Kim, Jong-Ki;Jung, Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.246-253
    • /
    • 2003
  • The tribological mechanism between the valve plate and the cylinder block in oil hydraulic axial piston pumps plays an important role on high power density. In this study, the fluid film thickness between the valve plate and the cylinder block was measured with discharge pressure and rotational speed by use of a gap sensor, and a slip ring system in the operating period. To investigate the effect of the valve plate shapes, we designed two valve plates with different shapes . the first valve plate was without a bearing pad, while the second valve plate had a bearing pad. It was found that both valve plates behaved differently with respect to the fluid film thickness characteristics. The leakage flow rates and the shaft torque were also experimented in order to clarify the performance difference between the valve plate without a bearing pad and the valve plate with a bearing pad. From the results of this study, we found out that in the oil hydraulic axial piston pumps, the valve plate with a bearing pad showed better film thickness contours than the valve plate without a bearing pad.

A Study on the Phase Bandwidth Frequency of a Directional Control Valve Based on the Hydraulic Line Pressure (배관 압력을 이용한 방향제어밸브 위상각 대역폭 주파수 측정에 관한 연구)

  • Kim, Sungdong;Lee, Jung-eun;Shin, Daeyoung
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Spool displacement of a direction control valve is the standard signal to measure the bandwidth frequency of the direction control valve. When the spool displacement signal is not available, it is suggested in this study to use the metering hydraulic line as an alternative way to measure - 90 degree phase bandwidth frequency of the hydraulic direction control valve. Dynamics of the hydraulic line is composed of inertia, capacitance, and friction effects. The effect of oil inertia is dominant in common hydraulic line dynamics and the line dynamics is close to a derivative action in a range of high frequency; such as a range of bandwidth frequency of common directional control valves. Phase difference between spool displacement and line load pressure is nearly constant as a valve close to 90 degree. If phase difference is compensated from the phase between valve input and pressure, compensated phase may be almost same as the phase of spool displacement that is a standard signal to measure phase bandwidth frequency of the directional control valve. A series of experiments were conducted to examine the possibility of using line pressure in to measure phase bandwidth frequency of a directional control valve. Phase bandwidth frequency could be measured with relatively high precision based on metering hydraulic line technique and it reveals consistent results even when valve input, oil temperature, and supply pressure change.

Characteristics of Lightweight Hydraulic Directional Control Valve for Emergency Steering in Hybrid Electric Commercial Vehicles (하이브리드 상용차용 경량 비상조향장치 유압방향제어밸브의 성능특성 연구)

  • Park, Kyungmin
    • Tribology and Lubricants
    • /
    • v.29 no.5
    • /
    • pp.291-297
    • /
    • 2013
  • Hydraulic directional control valves actuated by solenoid are used to control emergency steering in general or hybrid electric commercial vehicles. In this study, a new lightweight hydraulic directional control valve was designed by flow and structural simulation, and was fabricated; the basic operation, pressure differentials, and inner leakage flow were evaluated experimentally. In the results, the new model showed comparable performance with an existing imported valve. New valve was 80% the weight of the existing valve and had few components. Installing this valve on a truck body is easier because of its compactness and small size.

A Study on the Design and the Dynamic Characteristics of Electro-Hydraulic Flow Control Servo Valve (전자유압 서보 유량제어밸브의 설계 및 동특성 향상에 관한 연구)

  • 김고도;김수태
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.151-160
    • /
    • 2000
  • An experimental and theoretical analysis for the improvement of dynamic characteristics and design of electro-hydraulic flow control servo valve are performed. The theoretical results are compared with the experimental step responses, and the important design parameters of an electro-hydraulic flow control servo valve are derived by using the simulation program. Simulation parameters of nozzle jet coefficient and orifice and spool valve discharge coefficient are given through experiment. The theoretical and experimental step response curves show that the valve gain depends on the fixed orifice and nozzle $ratio(R_on)$ and is maximum at $R_on=1.$ And drain orifice in the flapper - nozzle return line creates a small back pressure, which improves the performance fur the valve.

  • PDF

Pressure characteristics at the land of valve plate in the oil hydraulic axial piston pump (유압 피스톤 펌프의 밸브 플레이트 랜드부 압력 특성)

  • 최형완;김종기;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.221-227
    • /
    • 2000
  • The design of the valve plate is most important to increase efficiency in the oil hydraulic axial piston pump. A theoretical study was carried out to clarify the pressure characteristics at the land of the valve plate in the oil hydraulic axial piston pump. Dynamic pressure acts on the land of the valve plate was computed numerically with discharge pressure, rotational speed and swash plate angle. Pressure distribution between the valve plate and the cylinder block also was obtained with dynamic pressure. The results are applicable to improve the design technique of the valve plate in the oil hydraulic axial piston pump.

  • PDF

Hydraulic Control Characteristics of the ABS for an Automotive (자동차 미끄럼방지 제동장치의 유압 제어 특성)

  • Kim, Byeong-Woo;Park, Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.10-17
    • /
    • 2007
  • For the purpose of optimal control of anti-lock brake system, precise dynamic characteristics analysis of the hydraulic modulator, especially solenoid valve is necessary. However, most of researches so law have dealt with dynamic characteristic analysis of valve itself and the results have been restrictive to apply on the actual ABS modulator, where hydraulic pressure is acting. In this study, mathematical modeling and experimental analysis were executed in order to evaluate the valve dynamic characteristics when the hydraulic pressure applied. High pressure on the master cylinder effects on the valve dynamic characteristics have been analyzed quantitatively and performance improvement methods have been suggested varying the design factor. Consequently, results of solenoid valve dynamic characteristics analysis derived in the study can be utilized criteria for the optimal control of anti-lock brake system.

  • PDF

Properties of the Load-Sensing Hydraulic System from a Viewpoint of Control (제어관점에서의 부하감지형 유압시스템의 특성)

  • 김성동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.738-750
    • /
    • 1994
  • The load-sensing hydraulic system which was developed to improve energy efficiency of conventional hydraulic systems has its own properties. The instability of system responses, linearity of a servo valve, robustness for variation of external load, and dynamic interference between hydraulic motors are such properties which have much to do with control properties of the system. The load-sensing hydraulic system has instability tendancy because the load-sensing mechanism makes a positive feedback loop between the motor part and the pump part. A flow property of the servo valve can be said to be linear because the flow through the valve has nothing to do with a load pressure and the flow is strictly proportional to a valve opening which is adjusted by a valve command signal. The resultant control property can be said to be robust because the steady-state control performance is independent to the load actuated on the motor shaft. In the case when one pump simultaneously drives more than two hydraulic motors, the pump outlet pressure is determined by a hydraulic motor of the largest load pressure among all of the hydraulic motors, and, thus, the other motors are dominated by the largest load pressure. That is, the other motors can be said to be interfered by the motor of the largest load pressure.

압력제어솔레노이드밸브를 이용한 직접구동 방식의 유압회로에 의한 자동변속기의 변속품질 향상에 관한 연구

  • 김정관;한명철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.505-508
    • /
    • 1995
  • This paper suggests new hydraulic circuit to control the pressure of clutches and brakes which has several advantages than conventional hydraulic circuit in automatic transmissions. In conventional hydraulic circuit, the pressures of all friction elements are controlled by only one pressure control valve and accumlators. So, controllable range is limited and it is unable to control the friction elements independently. Therefore, we can not do the fine control of timing between apply clutch and release clutch which is needed in clutch-to clutch shifting automatic transmissions. To overcome these faults, we designed the direct-acting hydraulic circuit where one pressure control valve and pressure control solenoid valve are allocated to each friction element and control that independently. Through this structural improvement of hydraulic circuit, we can achieve elaborate aontrol to clutch pressure. Specially, We can control the timing between apply clutch and release clutch delicately which is needed in clutch-to-clutch shifting.

  • PDF

발전소 배관지지용 유압완충기 개발

  • Park, Tae-Jo;Koo, Chil-Hyo;Cho, Gwang-Hwan;Lee, Dong-Ryul;Lee, Hyun;Kim, Yeon-Hwan
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.232-238
    • /
    • 1997
  • In this paper, a theoretical method is presented to design a hydraulic control valve system that consist of an important component in the hydraulic snubber. The hydraulic snubber is used essentially to support the piping systems at power plants. To calculate the force due to pressure drop and flow rate in the valve orifice and by-pass hole, Bernoulli equation is used. The Reynolds equation are numerically analyzed in the clearance gap between the valve cone and valve seat to estimate the friction force and leakage flow rate. Based on the detailed theoretical data, we developed successfully the hydraulic snubber for power plants.

  • PDF