• Title/Summary/Keyword: Hydraulic Valve

Search Result 605, Processing Time 0.031 seconds

Pressure Control Valve using Proportional Electro-magnetic Solenoid Actuator (비례솔레노이드 액추에이터를 이용한 압력제어밸브)

  • Ham Young-Bog;Park Pyoung-Won;Yun So-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1202-1208
    • /
    • 2006
  • This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed.

A Study on the Pulsation Characteristics of ESP Hydraulic Modulator (자동차 ESP 유압 모듈레이터의 수격 특성에 관한 연구)

  • Kim, Byeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3869-3875
    • /
    • 2012
  • In this study, mathematical modeling and experimental analysis were executed in order to evaluate the valve dynamic characteristics when the hydraulic pressure applied. High pressure on the master cylinder effects on the valve dynamic characteristics have been analyzed. The pulsation pressure generated in hydraulic systems causes noise, vibration and odd effect to the system. To reduce the pulsation pressure, high frequency PWM control of 20KHz was attempted. Also, an analytic method is proposed for the resultant forces of electromagnetism and hydraulic pressure generated in the real vehicle electro stability program. Consequently, results of solenoid valve dynamic characteristics analysis derived in the study can be confirmed criteria for the optimal control of electronic stability program system.

Analysis of Lubrication and Dynamic Characteristics of a Cylinder Block for Hydraulic Pump (유압펌프용 실린더 블록의 윤활 및 동특성 해석)

  • Ahn Sung-yong;Rhim Yoon-chul;Hong Yeh-sun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.99-107
    • /
    • 2004
  • Lubrication characteristics between a cylinder block and a valve plate for high speed bent-axis type hydraulic pump play an important role in volumetric efficiency and durability of pump. In this paper, a finite element method is presented for the computation of the pressure distribution between a cylinder block and a valve plate for high speed bent-axis type hydraulic pump. Also, a Runge-Kutta method is applied to simulate the cylinder block dynamics of three-degrees of freedom motion. From the results of computation, we can draw two major conclusions. One is related to the fluid film characteristics between a cylinder block and a valve plate and the other is related to the average leakage that is determined by the pressure gradient and the clearance near the discharge port. The numerical results of cylinder block dynamics were compared with the experimental results using eddy-current type gap sensors those are fixed at a pump housing.

  • PDF

A Heuristic Approach for Grading Operation of Hydraulic Excavator Systems using SMISMO Valve Configuration (SMISMO 밸브 구조를 채용한 유압식 굴삭기의 평탄화 작업을 위한 휴리스틱 접근)

  • Joh, Joongseon;Hwang, Cheol Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1153-1160
    • /
    • 2013
  • SMISMO valve configuration is now starting to draw attention of the researchers of the construction equipment industry to increase the fuel efficiency of their equipment like excavators and wheel-loaders. An open-loop control strategy for grading operation of hydraulic excavator systems using SMISMO valve configuration is investigated in this paper. Tabor's algorithm for 1 d.o.f. SMISMO system under the assumption of quasi-static operation is revealed as not adequate for multi d.o.f. system with large moment of inertia even though the motion of the system is slow. New parameters are proposed in this paper. It modifies Tabor's open-loop control strategy for the grading operation of hydraulic excavators using SMISMO valve configuration. A simulation-based parameter tuning method is also proposed. It uses GA (Genetic Algorithm) to find the best parameter values. Simulation study for a practical hydraulic excavator shows the validity of the proposed open-loop control strategy.

Optimization of tube-to-bar dissimilar FRW of hydraulic valve spool steels and the weld strength properties and its AE evaluation (유공압 밸브 스풀용 강재의 관 대 봉 이종재 마찰용접의 최적화와 용접강도특성 및 AE평가)

  • 오세규;김현필;장홍근;오명석
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.24-35
    • /
    • 1997
  • The hydraulic or pneumatic valve spools become essential as the important components on the production of automatic hydraulic or pneumatic as mechanical industry has been rapidly developed. The machining precision is in necessity for manufacturing the valve spools. They could be unstable in the quality by the conventional are welding. And also they have a lot of technical problems in manufacturing because their shapes are generally small. By the precision casting process such as lost wax process, the production cost may be increased. But by the friction welding technique, they will be able to be manufactured without such problems. This paper deals with the development of dissimilar friction welding optimization for the hydraulic or pneumatic valve spool by friction welding and a new approach of on real-time qualify evaluation by AE techniques.

  • PDF

Impact performance for high frequency hydraulic rock drill drifter with sleeve valve

  • Guo, Yong;Yang, Shu Yi;Liu, De Shun;Zhang, Long Yan;Chen, Jian Wen
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.39-46
    • /
    • 2016
  • A high frequency hydraulic rock drill drifter with sleeve valve is developed to use on arm of excavator. In order to ensure optimal working parameters of impact system for the new hydraulic rock drill drifter controlled by sleeve valve, the performance test system is built using the arm and the hydraulic source of excavator. The evaluation indexes are gained through measurement of working pressure, supply oil flow and stress wave. The relations of working parameters to impact system performance are analyzed. The result demonstrates that the maximum impact energy of the drill drifter is 98.34J with impact frequency of 71HZ. Optimal pressure of YZ45 rock drill is 12.8 MPa-13.6MPa, in which the energy efficiency reaches above 58.6%, and feature moment of energy distribution is more than 0.650.

A Durability Evaluation of Remanufactured Industrial Hydraulic Pump and Solenoid Valve (산업용 유압펌프 및 솔레노이드 밸브 재제조품의 내구성 평가)

  • Lee, Kyu-Chang;Park, Sang-Jin;Son, Woo-Hyun;Jeon, Chang-Su;Mok, Hak-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.537-546
    • /
    • 2021
  • Remanufacturing is one of the most important resource recycling technology in response to resource depletion and environmental pollution. Domestic remanufacturing industry don't invigorate compared to other advanced countries because of low price and reliability of remanufactured product. In this study, remanufactured hydraulic pump and solenoid valve were evaluated durability by accelerated life test. In order that standard remanufacturing process was developed by core analysis and failure mode and effect analysis. And cores were remanufactured by standard remanufacturing process. For accelerated life test, the evaluation item and criteria were deduced by results of FMEA, reliability standards and enterprise interior criteria. To evaluate durability of remanufactured product, the remanufactured hydraulic pump and solenoid valve were evaluated performance after accelerated life test and the results were satisfied with criteria. This study showed that remanufactured products have a similar level of durability to new products by definition of remanufacturing.

Designing the high performance electro-hydraulic position controller using 3-port servo valve for heavy and unidirectional load system (대부하 편하중 유압시스템의 3-port 서어보 밸브를 사용한 고속제어기 설계 연구)

  • 김영대;이관섭;정인수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.276-281
    • /
    • 1989
  • Comparison 3-port servo system with 4-port is made to obtain optimal design for heavy and unidirectional hydraulic system, It is concluded that 3-port servo system it more adequate than 4-port for the heavy load system which is usually operated at lower frequencies. High performance electro-hydraulic position controller is designed using 3-port servo valve. It includes dynamic pressure feedback as a inner loop and position feedback as a outer loop.

  • PDF

Study on a Magnet-Coupleed Hydraulic Direct Relief Valve (자석을 이용한 유압직동형 릴리이프 밸브에 관한 연구)

  • ;;Lee, Chung-Oh
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.1 no.2
    • /
    • pp.65-72
    • /
    • 1977
  • Major problems in the design and use of refief valve are (a) chattering because of instability, (b) excessive pressure differential which makes the valves crack far below maximum pressure diminishing useful flow in the system. In this study, A magnet-coupled relief valve is investigated theoretically and experimentally in order to improve the performance of a conventional direct type reliefvalve. A theory is developed to predict the performance, response, and stability of the magnet-coupled valve taking into account the delivery line response. In the experiment, a typical magnet-coupled relief valve is designed on the basis of the analytical results; the discharge rates are measured varying the supply pressure, and both the pressure-time curves and valve displacament-time curves are recorded providing the supply pressures greater than the setting pressure. The measured override characteristic curves are then compared with those of conventional pilot type and direct type releif valves. It is showm that the excessive pressure differential of a magnet-coupled relief valve becomes less than that of a conventional direct type valve. It is also shown that the most important chatacteristic of a magnet-coupled relief valve is to eliminate valve chattering due to instability regardless of the magnitude of setting pressures and discharge rates, which suggests wide applications of the idea of the use of a magnet in the design of hydraulic valves.

Static Analysis of Dedicated Proportional Flow Control Valve for IMV (굴삭기 IMV용 비례 유량제어밸브 정특성 해석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.39-47
    • /
    • 2018
  • Recently, as environmental regulations for earth-moving equipment have been tightening, advanced systems such as electronic control, have been introduced for energy savings. An IMV (Independent Metering Valve) consisting of four 2-way valves, is an electro-hydraulic control systems that provides more flexible controllability, and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully maximize use of an IMV, the bi-directional flow control valve that can regulate a large amount of flow in both directions, should be adopted. The hydraulic circuit of an IMV applied to an excavator from an overseas construction equipment company, reveals the flow control valve with the compound of proportional solenoid valve for first stage, and 2-way spool valve for the second stage. Moreover, the two spools are interconnected by a feedback spring, presumed to compensate for flow force acting on the second stage spool. This paper addresses the static analysis of flow control valve in an IMV to investigate the improvement of robustness, against flow force by the feedback spring. From the steady-state analysis of flow control valve model, it can be concluded that the feedback spring facilitates maintaining linearity of spool displacement for control input, and relatively constant flow for load disturbance.