• 제목/요약/키워드: Hydraulic System

검색결과 3,079건 처리시간 0.039초

전역슬라이딩모드 제어를 이용한 전기유압 시스템의 제어 (Control of the Hydraulic System Using the Global Sliding Mode Control)

  • 최형식;김명훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권2호
    • /
    • pp.218-228
    • /
    • 2003
  • A hydraulic system is modeled as the second order differential equation with uncertain system parameters and disturbance composed of modeling errors. To Position the load of the hydraulic system to a desired point. the servo valve of the hydraulic system is controlled. As a control scheme. a global sliding mode control(GSMC) is Proposed Since the servo valve has a torque limit. the GSMC is designed to coordinate the position of the load along the minimum time trajectory within the torque limit. The Proposed control scheme can be designed with ranges of parametric uncertainties and specified torque limits. By the proposed control scheme, the closed form solution of the arriving time at the desired position can be estimated.

소형 어선용 주기구동 유압식 고주파수 발전장치에 관한 연구 ( 1 ) - 유압펌프 제어방식 - (Hydraulic Constant Frequency Generation System Driven by Main Engine for Small Fishing Boat - Hydraulic Pump Control Type -)

  • 이일영;박상길;정용길
    • 수산해양기술연구
    • /
    • 제24권1호
    • /
    • pp.30-35
    • /
    • 1988
  • An electrical power generation system driven by main engine shaft, briefly SG system for middle or small size fishing boat is studied experimently. In the SG system, power transmission is performed by a variable displacement hydraulic pump driven by the main engine and a constant displacement hydraulic motor. It was verified that the SG system enabled the generation of electrical power with constant frequency regardless main engine speed. In the SG system, setting reference frequency, sensing generator output frequency and setting controller parameters are performed by performed by programming in a microcomputer, so a countermeasure for physical situations of control object is very easy. Futhermore, the SG system has following features; low initial installation cost, wide freedom of installation in engine room, advantage of application in existing ships, especially fishing boat with hydraulic fishing equipments.

  • PDF

유전 알고리즘을 이용한 유압 위치계의 PID 제어기 동조 (Tuning of PID Controller for Hydraulic Positioning System Using Genetic Algorithm)

  • 김기범;박승민;김인수
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.93-101
    • /
    • 2016
  • This study presents a simple genetic algorithm to systematically design a PID controller for a hydraulic positioning system operated by a proportional solenoid valve. The inverse dead-zone compensator with nonlinear characteristics is used to cancel out the dead-zone phenomenon in the hydraulic system. The object function considering overshoot, settling time, and control input is adopted to search for optimal PID gains. The designed PID controller is compared with the LQG/LTR controller to check the performance of the hydraulic positioning system in the time and frequency domains. The experimental results show that the hydraulic servo system with the proposed PID controller responds effectively to the various types of reference input.

크레인 기능 부착 지능형 유압 굴삭기 시스템 개발 (Development of Intelligent Hydraulic Excavator System with Crane Function)

  • 이홍선;이민희;임태형;천세영;양순용
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.29-36
    • /
    • 2006
  • The hydraulic excavators are mainly applied for excavating, public works, quarrying, etc. In some of the construction site, however, they are used for crane works of relatively light materials, although the crane works by the hydraulic excavators are forbidden by law due to the safety reasons. The major construction equipment companies in forward countries have been developing the new systems, e.g. crane works by the hydraulic excavators, and they are working in the construction site. Therefore, the new system of crane works by the hydraulic excavators should be developed for the domestic construction site in order to prevent the accident. In this paper, the fundamental study and experiment are accomplished for the crane system application on the hydraulic excavators.

유압관로의 비정상유동에 따른 임피던스 전달특성 (A Characteristics of Impedance Propagation by the Unsteady Flow in a Hydraulic Pipeline)

  • 모양우;유영태;나기대;김지환
    • 한국공작기계학회논문집
    • /
    • 제13권6호
    • /
    • pp.48-55
    • /
    • 2004
  • Design for quite operation of fluid power system requires the understanding of noise and vibration characteristics of the system. This paper presents a dynamic response of design of hydraulic circuit. Experimental investigations on the attenuation of pressure ripple in automotive power steering hydraulic pipe line is examined. Also, a mathematical model of hydraulic pipe is p개posed to support a design of the hydraulic circuit. and the impedance characteristics of pressure ripple is analyzed. It is experimentally shown that power steering hydraulic pipe attenuates pressure ripple with high frequency.

콤플렉스법에 의한 호이스트 유압회로 유량제어밸브의 최적유량계수 설계 (Design of Optimal Capacity Coefficients of Flow Control Valves in the Hoist Hydraulic System Using the Complex Method)

  • 이성래
    • 유공압시스템학회논문집
    • /
    • 제4권1호
    • /
    • pp.1-6
    • /
    • 2007
  • The typical hydraulic system of hoist is composed of a hydraulic supply unit, a directional control valve, two pilot operated check valves, two flow control valves. The capacity coefficients of flow control valves should be adjusted for the hoist to operate at moderate speed and minimize the hydraulic energy loss. However, it is difficult to adjust the four capacity coefficients of flow control valves by trial and error for optimal operation. The steady state model of the hoist hydraulic system is derived and the optimal capacity coefficients of flow control valves are obtained using the complex method that is one kind of constrained direct search method.

  • PDF

틸팅 부하메커니즘 특성 분석을 위한 유압식 부하특성 평가 장치구성에 대한 연구 (A Study on a Configuration of the Load Characteristic Evaluation Device Using Hydraulic Power for the Analysis of the Tilting Kinetic Mechanism)

  • 이준호;김호연;한성호
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1152-1158
    • /
    • 2011
  • In this paper a configuration of the load evaluation device for the tilting actuator using hydraulic power is presented, which makes it possible to measure the force action on the tilting actuator. It is possible to measure only current using the conventional electro-mechanical actuator when the bogie is in the process of the tilting. This makes impossible to measure the force acting on the tilting actuator. In order to overcome this problem a kinetic mechanism test system using hydraulic cylinder is proposed. The system are consisted of hydraulic cylinder for the tilting actuation, control system to control hydraulic power, sensors to measure for force and displacement and monitoring system for the user interface.

부하감지시스템을 사용한 굴삭기의 유압제어특성 시뮬레이션 (A Simulation on the Hydraulic Control Characteristics of Excavator Using Load Sensing System)

  • 조승호
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.134-145
    • /
    • 1998
  • The purpose of this paper is to construct a computer simulation system which can analyze and design the hydraulic excavator Theoretical analyses are performed on the hydraulic circuit and attachment of excavator with load sensing system. Databases are constructed for control valve opening areas, horsepower control and for load sensing regulator. For hydraulic components modularized programming techniques are applied which is expected to be utilized for software development of fluid power system. Through simulation an information of any point in hydraulic circuit can be obtained.

  • PDF

카운터밸런스밸브와 차동실린더회로를 포함한 호이스트 유압장치의 최적설계 (Optimal Design of the Hoist Hydraulic System Including the Counter Balance Valve and Differential Cylinder Circuit)

  • 이성래
    • 유공압시스템학회논문집
    • /
    • 제5권1호
    • /
    • pp.13-19
    • /
    • 2008
  • The typical hydraulic system of hoist is composed of a hydraulic supply unit, a directional control valve, counter balance valve, and flow control valves. The flow capacity coefficients of flow control valves should be adjusted so that the hoist is operated at moderate speed and the hydraulic energy loss is minimized. However, it is difficult to adjust the flow coefficients of flow control valves by trial and error for optimal operation. Here, the steady state model of the hoist hydraulic system including the differential cylinder circuit is derived and the optimal flow capacity coefficients of flow control valves are obtained using the complex method that is one kind of constrained direct search method.

  • PDF

w 변환법에 의한 전기 - 유압식 조속기를 가진 박용디젤기관의 속도제어 (The Speed Control of a Marine Diesel Engine with Electro Hydraulic Governor by using W Transformation Method)

  • 강창남;박진길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권2호
    • /
    • pp.195-205
    • /
    • 1997
  • The propulsion marine diesel engine have been widely applied with a mechanical- hydraulic governor to control the ship speed for long time. But it was recently very difficult for the mechani¬cal - hydraulic governor to control the speed of engine under the condition of low speed and low load because of jiggling by rough fluctuation of rotating torque and hunting by dead time of Desiel engnie The performance improvement of mechanical - hydraulic governor is required to solve these problems of control system. The electro - hydraulic governor using PID algorithm is provided to compensate the faults of mechanical- hydraulic governor. In this paper, in order to analyze the ship speed control system, the transfer function was converted from the z tansformation to w transformation. The influence of dead time changing by engine speed which induces hunting phenomena was investigated by Nichols chart of w plane. As a method of performance improvement of mechanical hydraulic governor, a Eletro - hydraulic governor shows that fine control results can be obtained through optimal parameter tuning of PID

  • PDF