• Title/Summary/Keyword: Hydraulic Stability

Search Result 569, Processing Time 0.028 seconds

Assessment of Levee Slope Reinforced with Bio-polymer by Image Analysis (영상분석을 통한 바이오폴리머로 보강된 제방사면 안정성 해석)

  • Ko, Dongwoo;Kang, Joongu
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.258-266
    • /
    • 2019
  • This study was conducted to apply natural river technologies to levees and examine the results. The new eco-friendly bio-polymer was applied, a combination of eco-friendly biopolymers and soil, to levee slope to enhance durability and eco-friendliness and to establish reinforcement measures against unstable levees due to overtopping. A semi-prototype levee of 1 m in height, 3 m in width, with a 1:2 slope and 5 m length, was constructed at the Andong River Experiment Center. The bio-soil mixed with the biopolymer and the soil at an appropriate ratio was treated with a 5 cm thickness on the surface of levee to perform the stability evaluation according to overtopping. Using the pixel-based analysis technique using the image analysis program, the breached area of levee slope was calculated over time. As a result, the time for complete decay occurs more than 12 times than that of ordinary soil levee. Therefore, when the new substance is applied to the surface of levee, the decay delay effect appears to be high.

A Study on the Environmentally Friendly Block (환경친화적 블록에 관한 연구)

  • Han, Woon-Woo;Lee, Kee-Se;Ahn, Tae-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.3
    • /
    • pp.63-72
    • /
    • 2005
  • The characteristics of environmentally friendly block, roughness, erosion, stability and dissolved oxygen(DO) were investigated by hydraulic experiment. It was found that the roughness of A-block was lower than I block and A block was more stable to the variation of flow. So it is expected that A-block will be more effective to the channel flow. It was also found that the erosion of channel bed was very small or rarely occurred and stable in the case of 3-dimensional A-block filled with sand. And 3-dimensional A-blocks assembled with A-blocks were more stable against the flow force than I block because of the united force of A-blocks. When the bed of channel was paved with 3-dimensional A-blocks, DO was increased higher than I block. So it is expected that A-block will be more advantageous to underwater environment than I block.

  • PDF

Analysis of an Actual Slope Failure in the Residual Soil by Suction Stress Based Effective Stress (흡수응력에 기반한 유효응력에 의한 실제 잔류토 사면 붕괴의 해석)

  • Oh, Seboong;Lu, Ning;Park, Young Mog;Lee, Junsuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.113-120
    • /
    • 2012
  • An actual slope failure was analyzed in residual soils at Jinju. Due to rainfall infiltration, the safety factor decreases in the unsaturated layers, since the effective stress and shear strength decrease. In this study, the effective stress is based on suction stress using soil water retention curve. Unsaturated properties were evaluated on soil water retention curve, hydraulic conductivity and shear strength with samples from the site. After infiltration analysis of unsaturated flow under the actual rainfall, the distribution of pore water pressure could be calculated in the slope layers. In the stress field of finite elements, an elastic analysis calculated total stress distribution in the layers and also shear stresses on the slip surface using elastic model. On the slip surface, suction stress and effective stress evaluated the shear strength. As a result, the factor of safety was calculated due to rainfall, which could simulate the actual slope failure. In particular, it was found that the suction stress increases and both the effective stress and the shear strength decrease simultaneously on the slip surface.

Development of Motion Control Techniques and Sea Trials of The Test Ship $\ulcorner$NARAE$\lrcorner$ (시험선 $\ulcorner$나래$\lrcorner$의 자세 제어 기술 개발 및 실해역 시험)

  • J.W. Kim;Y.G. Kim;G.J. Lee;C.Y. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.26-37
    • /
    • 1998
  • In this study, the motion control techniques allied to the test ship NARAE are summarized and the results of sea trials are resented. NARAE adopted a hybrid hull form with lower hull and submerged foils. This type of ship has a substantial instability in heave, pitch and roll modes at the foil-borne stage due to little restoring force, so an active control is indispensable to keep the stability. 4-hydraulic actuators with servo valves were installed to drive foils, and several sensors were used to measure the motion of the ship. PID controller was adopted as a motion controller, and for the real-time control, Pentium-class industrial PC was used. Sea trials including take-off, landing, and banked turn maneuvering were carried out for a period of over 3 months and quite satisfactory results were obtained.

  • PDF

Irregular Wave Model for Youngil Bay (영일만의 불규칙파 모형)

  • 정신택;채장원;이동영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.146-150
    • /
    • 1996
  • The waves are most important dynamical factors for the analyses of structural stability and topographical changes on coastal engineering field. However, wind-generated waves are very irregular in shape and transformed through refraction, diffraction and shoaling when they propagate into shallow water where bottom topography and water depth vary significantly. Recently, Vincent and Briggs (1989) reported hydraulic model experiments for the transformation of monochromatic and directionally-spread irregular waves passing over a submerged elliptical mound. They concluded that for the case of combined refraction-diffraction of waves by a shoal, the propagation characteristics of the irregular and equivalent regular wave conditions can be vastly different. On the irregular wave transformation have been made theoretical and numerical studies for several years. Although theoretical and laboratory studies on wave transformation have progressed considerably, field measurement and comparison of numerical results with related theories are still necessary for the prediction of the phenomena in reality. In this study, field measurement of both incident and transformed waves in Youngil Bay were made using various kinds of equipments, and numerical computations were made on the transformed frequency spectra of large waves propagating over the shoal using Chae and Jeong's (1992) elliptic model. It is shown that this model results agree very well with field data, and thus the applicability of the model is now validated.

  • PDF

Development of New Type of Submerged Breakwater for Reducing Mean Water Level behind Structure (배후수위 저감효과를 가진 신기능 잠제의 개발)

  • Hur, Dong-Soo;Lee, Woo-Dong;Goo, Nam-Heon;Jeon, Ho-Seong;Jeong, Yeon-Myeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.130-140
    • /
    • 2017
  • Typically, a submerged breakwater is one of the good scene-friendly coastal structures used to reduce wave energy and coastal erosion. However, sometimes, a submerged breakwater also has a negative aspect in that a strong rip current occurring around an open inlet due to a difference in mean water levels on the front and rear sides of the structure leads to scouring. Such scouring has a bad effect on its stability. In order to eliminate this kind of demerit, this study investigated four new types of submerged breakwaters with drainage channels. First, hydraulic experiments were performed the typical and new structures. Then, the wave height and mean water level distributions around the structures were examined using the experimental results. Finally, it was revealed that the new type of submerged breakwater could efficiently reduce the mean water level on its rear side. In particular, in the case of new-type submerged breakwater 2, an average reduction efficiency of 71.2% for the difference between the mean water levels at the front and rear sides was shown in comparison with the typical one.

A case study on asymmetric deformation mechanism of the reserved roadway under mining influences and its control techniques

  • Li, Chen;Wu, Zheng;Zhang, Wenlong;Sun, Yanhua;Zhu, Chun;Zhang, Xiaohu
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.449-460
    • /
    • 2020
  • The double-lane arrangement model is frequently used in underground coal mines because it is beneficial to improve the mining efficiency of the working face. When the double-lane arrangement is used, the service time of the reserved roadway increases by twice, which causes several difficulties for the maintenance of the roadway. Given the severe non-uniform deformation of the reserved roadway in the Buertai Coal Mine, the stress distribution law in the mining area, the failure characteristics of roadway and the control effect of support resistance (SR) were systematically studied through on-site monitoring, FLAC 3D numerical simulation, mechanical model analysis. The research shows that the deformation and failure of the reserved roadway mainly manifested as asymmetrical roof sag and floor heave in the region behind the working face, and the roof dripping phenomenon occurred in the severe roof sag area. After the coal is mined out, the stress adjustment around goaf will happen to some extent. For example, the magnitude, direction, and confining pressure ratio of the principal stress at different positions will change. Under the influence of high-stress rotation, the plastic zone of the weak surrounding rock is expanded asymmetrically, which finally leads to the asymmetric failure of roadway. The existing roadway support has a limited effect on the control of the stress field and plastic zone, i.e., the anchor cable reinforcement cannot fully control the roadway deformation under given conditions. Based on obtained results, using roadway grouting and advanced hydraulic support during the secondary mining of the panel 22205 is proposed to ensure roadway safety. This study provides a reference for the stability control of roadway with similar geological conditions.

Hydraulic stability evaluation for deep tunnel on continuous precipitation (연속강우에 대한 대심도 터널의 수리적 안정성 평가)

  • Oh, Jun Oh;Park, Jae Hyeon;Park, Chang Keun;Jun, Sang Mi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.99-99
    • /
    • 2016
  • 최근 홍수의 특성과 피해 양상은 과거와는 다르게 변화하고 있으며, 급격한 도시화로 인하여 기존 하천유역의 저류 능력이 감소하였는데 이러한 한계를 극복하기 위하여 이미 외국에서는 대심도 터널을 활용한 홍수재해 관리방안이 오래전부터 활용되어 왔다. 본 연구에서는 현재 서울시에 건설중인 '신월 빗물저류배수시설' 연속강우 시 대심도 터널의 수리적 안정성 평가와 운영방안 수립을 위한 수리모형실험을 실시하였다. 모형은 Froude 상사법칙을 사용하여 원형의 1/50크기로 제작하였다. 모형의 전체 저류 가능량은 모형기준 $2.78m^3$ (원형 $347,778m^3$)이며, 터널 내 잔류수는 전체 저류 가능량의 0 ~ 100%까지 10%씩 변화시켜 실험 CASE를 선정하였다. 각 실험CASE별 수직 유입구 안정성 평가를 실시한 결과 터널 내 잔류수가 10%~80%까지 존재 할 때는 저지수직구1에서의 압축공기 폭발현상으로 인한 월류현상이 발생하였으며, 10%~40%까지는 저지수직구2에서 월류현상이 발생하였다. 하지만 고지수직구에서는 모든 CASE에서의 공기폭발 현상 및 월류현상이 발생하지 않아 유입성능 및 공기배출 성능이 충분히 발휘되고 있는 것으로 분석되었다. 또한 저지수직구1에서의 월류현상 발생 시점은 5분55초에서 3분42초까지 빨라졌으며 저지수직구2에서의 월류현상 발생 시점은 5분57초에서 4분57초로 빨라졌다. 이는 터널 내 잔류수량이 증가할수록 터널 내 만관시점이 빨라져 발생하며, 저지수직구1,2에서의 압축공기 폭발현상 및 월류 현상은 터널 내에서 발생한 반사파의 영향으로 판단된다. 차후 터널 내 반사파 발생에 대한 연구가 추가적으로 진행되어야 할 것이다.

  • PDF

Calculation of Joint Center Volume (JCV) for Estimation of Joint Size Distribution in Non-Planar Window Survey (비평면 조사창에서의 암반절리 크기분포 추정을 위한 Joint Center Volume (JCV) 산정 기법 제안)

  • Lee, Yong-Ki;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.29 no.2
    • /
    • pp.89-107
    • /
    • 2019
  • Rock joints have an extremely important role in analyzing the mechanical stability and hydraulic characteristics of rock mass structures. Most rock joint parameters are generally indicated as a distribution by statistical techniques. In this research, calculation technique of Joint Center Volume (JCV) is analyzed, which is required for estimating the size distribution having the largest uncertainty among the joint parameters, then a new technique is proposed which is applicable regardless of the shape of survey window. The existing theoretical JCV calculation technique can be applied only to the plane window, and the complete enumeration techniques show the limitations in joint trace type and analysis time. This research aims to overcome the limitations in survey window shape and joint trace type through calculating JCV by using Monte Carlo simulation. The applicability of proposed technique is validated through the estimation results at non-planar survey windows such as curved surface and tunnel surface.

Analysis of Hydraulic Impacts due to Sudden Enlargement of Kyungpo-cheon River Channel (경포천 하도 급확대에 따른 수리학적 영향분석)

  • Choi, Jong-Ho;Jung, Tae-Jung;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.35-45
    • /
    • 2019
  • The enlargement and reduction of river channels can not only change the flow of water but also alter sedimentation patterns, thus hindering smooth flood conveyance. Accordingly, this study aims to analyze the effects of the sudden enlargement of river channels on changes in the riverbed and river flow. For this purpose, as part of the "Hometown River" Construction Project, this study examined the local river Kyungpo-cheon, which a section of the river channel was widened by at least two- to three-fold, using RMA-2 and SED-2D models to simulate the changes in flow characteristics and riverbed variation due to the widening of the channel. The results of the study indicated that widening the Kyungpo -cheon river channel secured its dimensional stability in comparison to before widening. however, due to a flood frequency of more than once per year, future maintenance and management will be costly and time-consuming.